
Massachusetts Institute of Technology MITES 2017–Physics III

Lecture 10: Linear Dynamics

In these notes, we introduce the topic of first-order linear dynamics and consider how to describe oscillatory
systems outside of physics. We begin by showing that first-order differential equations in a single variable
cannot exhibit oscillatory dynamics, and then we discuss two examples—a toy model and a model from
population ecology—of two-variable first-order differential equations which do exhibit oscillatory dynam-
ics.

1 Oscillations without physics?
So far in the course, we have discussed oscillating systems as defined by the fundamental equations of
physics. Earlier, with Newton’s 2nd Law, we derived the equations of motion of various oscillating systems
and by increasing the number of degrees of freedom of the system, we were able to derive the wave equation.
More recently, using Maxwell’s equations we derived the wave equation for propagating electromagnetic
fields.

But the world is full of oscillating systems which are not described by the equations of fundamental
physics. For example, the populations of species can oscillate, the number of proteins produced in a cell can
oscillate [2], and the relative proportions of reactants in a reaction can oscillate [1] and yet none of these are
at all related to the equations we’ve been preoccupied with so far. The classic example of oscillating species
populations is shown in Fig. 1. Our hope is to be able to describe (at least qualitatively) this data through a
model.

Figure 1: Data on the hare and lynx population in Hudson bay based on fur pelts collected for trading. This
plot is the canonical one used for discussing the models of the type in these notes but there are reasons to
be not take it too seriously. (See Reference for a short discussion of issues with data)

Finding ways to model such systems will be the focus for this final section. Phrasing this focus at a
framing question, we are looking for more general ways to model oscillating systems, in particular ways
which are not precisely related to physical principles.
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Framing Question
How do we model oscillating systems whose dynamics are not directly defined by physical

principles?

2 First-Order DE in One Variable
Systems in which variables oscillate in time are part of a wider class of systems termed dynamical systems.
A dynamical system is simply a system in which the variables which characterize the system’s degrees of
freedom (e.g., positions, angles, vector fields) vary in time. In our pursuit of models of oscillatory systems,
it will be useful to consider the more general class of dynamical systems first and look at oscillatory phe-
nomena as a subset of this class.

2.1 Model of Bacterial Growth (Redux)
We will begin with the model with which we started this course: Bacterial growth. In our imaginings of our
previous work in a bacteriology lab, we postulated that the growth rate of the area of a bacteria population
scaled with the area itself, that is dA/dt = kA. Noting that the numberN(t) of bacteria in a colony should be
proportional to the area the colony makes in the plate, the differential equation for bacterial growth could
be written as

dN

dt
= λ0N, (1)

where λ0 is a parameter with units of 1/time. We want to know if it is possible for equations of the form
shown in Eq.(1) to exhibit oscillations. Phrases more precisely, we ask

Question
Is it possible for first-order differential equations in a single variable to predict oscillatory

phenomena?

Considering Eq.(1) itself, we know that this differential equation does not predict any oscillations in
bacterial size: The general solution to Eq.(1) is

N(t) = N(0)eλ0t, (2)

which for λ0 > 0 only predicts an exponentially growing number of bacteria1

What if we started with a different differential equation? Although we did not reach this conclusion
when we first considered a model of bacterial growth, the solution Eq.(2) is actually unrealistic because
bacteria confined to a finite container will not grow forever without bound. Instead, we should expect the
growth rate to decrease the more bacteria there already are. That is if λ(N) is the per-bacterial growth rate,
instead of having λ(N) = λ0 we should have something like

λ(N) = λ0

(
1− N

N∞

)
, (3)

1We must also take λ0 in Eq.(1) to be real because the growth rate dN/dt is a real and measurable quantity.

2



2 FIRST-ORDER DE IN ONE VARIABLE M. WILLIAMS

where N∞ defines the non-zero value of N at which the bacterial population no longer grows. The differ-
ential equation for bacterial growth would therefore be

dN

dt
= λ(N)N = λ0N

(
1− N

N∞

)
. (4)

Does Eq.(4), exhibit oscillations in the number of bacteria? We can answer this question by finding N(t).
Eq.(4) can be solved exactly through the use of separation of variables (and using the identity ”a/[x(x−a)] =
1/(x− a)− 1/x”). We quote the result:

N(t) = N(0)
N∞e

λ0t

N∞ +N(0)(eλ0t − 1)
. (5)

We note that Eq.(5) does not exhibit oscillations. Rather, as t→∞we find that N(t)→ N∞.
We could have predicted that Eq.(4) would not exhibit oscillations based on its behavior near the values

of N where dN/dt = 0. Such values are termed equilibrium values2 and we know from our previous
studies of oscillatory motion, that we would only have oscillations if N(t) varied as a sinusoidal function of
time near its equilibria. Is this the case, for our current model? Considering the right-hand side of Eq.(4),
we know that dN/dt = 0 when we have

N = 0 or N = N∞. [Equilibrium points] (6)

We will consider the dynamics of our system at each of these equilibria to show why we should not have
expected Eq.(4) to exhibit oscillations.

First, let’s consider the dynamics near N = 0: We will take N(t) = n(t) where n(t)� N∞. In this limit,
Eq.(4) becomes

dn

dt
' λ0n, (7)

which has the exponentially-increasing solution n(t) ' n(0)eλ0 . Thus, near the equilibrium point N = 0,
our bacteria system does not exhibit oscillations.

Now, let’s consider the dynamics nearN = N∞. We will takeN(t) = N∞+δ(t), where |δ(t)| � N∞, and
δ(t) can be positive or negative. Inserting this approximation into Eq.(4) and only keeping the lowest-order
non-zero terms, we find

dδ

dt
' −λ0δ, (8)

which has the exponentially-decreasing solution δ(t) ' δ(0)e−λ0t. Thus, near the equilibrium point N =
N∞, our bacteria system does not exhibit oscillations.

2.2 Decay, Growth, or Constancy — No Oscillations
There is a pattern at work here. We could try to generalize Eq.(4) so that the growth rate λ(N), were some
other function of N , but the results would be pretty similar: Near the values of N where dN/dt = 0, we
would find exponential-decay or exponential-increase (or even constant solution), but we would never find
oscillatory dynamics. This fact is fairly important, so we’ll give it it’s own line

No oscillations in 1st-order single-variable DEs: First-order single variable differential equa-
tions of the form

dN

dt
= F (N), (9)

where F (N) is a non-zero function of N , can yield solutions where N(t) decays exponentially,
2This is the dynamical systems definition of equilibrium as the point where dN/dt = 0. This is not equilibrium in the physics sense

of the word where net-force is zero. Our model of bacteria growth does not include force so the physics definition does not apply.
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increases exponentially, or remains constant near its equilibria, but not solutions where N(t)
oscillates in time near its equilibria.

The proof of this claim is fairly simple. Say N1 is a value of N at which dN/dt = 0. For example, in our
second model of bacterial growth Eq.(4), N1 would be 0 orN∞. Let us consider the dynamics of Eq.(9) near
this equilibrium value. First, we define

N(t) = N1 + δN(t), (10)

where δN(t) has a magnitude much less thanN1. IfN1 defines a point where dN/dt = 0, then we must have
F (N1) = 0. Also, given Eq.(10), we can expand F (N) in a Taylor series near N1. Doing so, we find

F (N) = F (N1) + F ′(N1)δN(t) +O
(
(δN)2

)
= F ′(N1)δN(t) +O

(
(δN)2

)
. (11)

Dropping the higher-order terms in Eq.(11) (because they are smaller corrections) and inserting Eq.(10) into
Eq.(9), we then ultimately find the differential equation

d

dt
δN(t) = F ′(N1)δN(t), (12)

which has the solution
δN(t) = δN(0) exp [t F ′(N1)] , (13)

which affirms the claim that Eq.(9) can only vary exponentially or not at all near its equilibria. If F ′(N1) > 0,
we have exponential increase away from the equilibrium pointN1; if F ′(N1) < 0, we have exponential-decay
toward the equilibrium point N1; and if F ′(N1) = 0 the system simply remains at δN(0) for all time.

Therefore to answer the question which framed this section: It is not possible to use equations of the form
Eq.(1) (or more generally Eq.(9)) to model oscillatory dynamics. Differential equations with one variable
and, at most, a first-order derivative never exhibit oscillations.

3 Linear First-Order DE in Multiple Variables
In the previous section, we showed that it was not possible for first-order differential equations in a single
variable to lead to oscillatory dynamics. This is an important piece of information in trying to find non-
physics based systems which oscillate. We already know that second-order differential equations in a single
variable can oscillate. What about first-order differential equations in two or more variables?

Question
Is it possible for first-order differential equations in two (or more) variables to predict oscillatory

phenomena?

We will begin with two variables. Let us say we have the system of differential equations shown below

dNX
dt

= β (NX −N01) + α (NY −N02) , (14)

dNY
dt

= −α (NX −N01)− β (NY −N02) , (15)

where NX(t) defines the number of some quantity X , and NY (t) defines the number of some quantity Y ,
both as functions of time. The system models a largely theoretical process in which the rate of increase
(or decrease) of both NX and NY comes in two parts. One contribution to the rate of change in NX is
proportional to NX − N01, so that NX increases if NX > N01. A second contribution to the rate of change
in NX is proportional to NY − N02, so that NX increases if NY > N02. Similarly, one contribution to the
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rate of change in NY is proportional to −(NX − N01) leading to decreases in NY , if NX > N01. A second
contribution to the rate of change in NY is proportional to (NY −N02) so that NY decreases if NY > N01.

Does this system3 exhibit oscillations in the dynamical variables NX and NY ? Toward answering this
question we first define new variables nX and nY to simplify the system of equations. With the definitions

nX ≡ NX −N01, and nY ≡ NY −N02, (16)

where N01 and N02 are time independent, the system of equations becomes

dnX
dt

= βnX + αnY , (17)

dnY
dt

= −αnX − βnY .. (18)

Solving the system defined by Eq.(17) and Eq.(18) would be tantamount to solving Eq.(14) and Eq.(15) be-
cause the dynamical variables are related by a constant offset shown in Eq.(16). To determine whether this
system oscillates, we can find the general solutions for nY (t) and nX(t) using methods similar to those we
used to study simple harmonic oscillators and damped harmonic oscillators (i.e., guess and check methods).
However, we will instead apply a more general analysis which can be extended to equations not as simple
as Eq.(17) and Eq.(18).

We first represent Eq.(17) and Eq.(18) as matrix equations. We have

d

dt
n = Â n, (19)

where we defined
n =

(
nX
nY

)
, Â =

(
β α
−α −β

)
. (20)

Our objective is to find a general solution to Eq.(19). In anticipation of any complex solutions we may find,
we promote the real quantities nX and nY to complex numbers ñX and ñY , respectively. The matrix Â
remains the same, but now we have the equation

d

dt
ñ = Â ñ, (21)

where ñ = (ñX , ñY )T . The n in Eq.(19) is related to the ñ in Eq.(21) through

n = Re[ñ]. (22)

In order to find solutions to Eq.(21), we employ techniques of linear algebra to reduce the matrix equation
to a set of single variable equations. We can achieve this by finding the eigenvalues and eigenvectors of Â.
More specifically, we assume that ñ can be written as

ñ(t) = c̃1v1(t) + c̃2v2(t), (23)

where c̃1 and c̃2 are arbitrary (and possibly complex) constants and v1 and v2 are orthogonal (and possibly
complex) vectors which satisfy

Âv1(t) = λ1v1(t), Âv2(t) = λ2v2(t). (24)
3Although the system defined by Eq.(14) and Eq.(15) is theoretical and has been chosen to investigate the possibility oscillatory

dynamics in two variable systems, it is possible to reduce the behavior of more complicated physics systems to differential equations
of this form.
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Postulating the form Eq.(23) conditioned on Eq.(24) is mathematically equivalent to our previous ”guess
and check” method used to study coupled oscillators. The effect of guessing an exponential solution for ñ
essentially leads the eigenvalue-eigenvector relationships of Eq.(24). Inserting Eq.(23) into Eq.(21), using the
fact that v1 and v2 are orthogonal, and employing Eq.(24), we find the differential equations

d

dt
v1 = λ1v1,

d

dt
v2 = λ2v2. (25)

These equations have the solutions v1(t) = v1(0)eλ1t and v2(t) = v2(0)eλ2t, respectively. Thus we find that
Eq.(23), becomes

ñ(t) = c̃1v1(0)eλ1t + c̃2v2(0)eλ2t, (26)

where c̃1 and c̃2 are again arbitrary complex constants. Thus, we see that the key to finding the general
solution to Eq.(21) (and, by relation, Eq.(19)), is finding the values λ1,2 and v1,2(0), that is, the eigenvalues
and eigenvectors respectively of Â in Eq.(20).

We can find the eigenvalues and eigenvectors by the standard method. Computing the values of λ for
which det[Â− λI] = 0, we have the equation

0 = det
(
β − λ α
−α −β − λ

)
= λ2 − β2 + α2 (27)

with solutions
λ± = ±

√
β2 − α2. (28)

Thus we find the eigenavlues are λ1 =
√
β2 − α2 and λ2 = −

√
β2 − α2. Solving Eq.(24), for the correspond-

ing (un-normalized) eigenvectors, we obtain

v1(0) =

(
α

β +
√
β2 − α2

)
, v2(0) =

(
α

β −
√
β2 − α2

)
. (29)

With these results, we find that the general solution (for the complex vector Ñ) is

ñ(t) = c̃1

(
α

β +
√
β2 − α2

)
et
√
β2−α2

+ c̃2

(
α

β −
√
β2 − α2

)
e−t
√
β2−α2

. (30)

Given Eq.(30), we can determine the physical solution by using Eq.(22). Given the relationship between β
and α, we have two possibilities. If β > α, we can define Γ ≡

√
β2 − α2, and the physical solution would be

n(t) = c1

(
α

β + Γ

)
eΓt + c2

(
α

β − Γ

)
e−Γt, (31)

where c1 and c2 are real constants. It is clear that Eq.(31) does not exhibit oscillations in the dynamical
variables, for its time dependence is defined by decaying or growing exponentials. However, if β < α, we
can define Ω ≡

√
α2 − β2, and the physical solution would be

n(t) =

(
nX(0)
nY (0)

)
cos(Ωt) +

1

Ω

(
βnX(0) + αnY (0)
−αnX(0)− βnY (0)

)
sin(Ωt), (32)

where we defined the solution in terms of nX(0) and nY (0) for simplicity. Eq.(32) exhibits the desired be-
havior. Therefore, given Eq.(16) and the assumption α > β, we find that NX and NY oscillate about N01

andN02 with a frequency
√
α2 − β2. Thus we can answer the question which began this section in the affir-

mative: It is indeed possible for a system of first-order differential equations in two variables to exhibit
oscillations.
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4 Nonlinear First-Order DE in Multiple Variables
The two-variable differential equation we explored in Sec. 3 was linear which is to say that it only consisted
of dynamical variables to the first power and no variables multiplied together. However, when studying
more complex systems—like the rate equations for chemical reactions [1], mRNA and protein dynamics [2],
or models of epidemics [3]—we find that the dynamical equations (even though they are often first-order in
time derivatives) are nonlinear in the dynamical variables. This nonlinearity often leads to rich dynamical
behavior which we do not have time to explore here (but check out [4] for a discussion). Instead, we will
return to the situation which motivated these lecture notes, and we will show how such nonlinear equations
depict oscillatory dynamics similar to the kind we have been studying all summer.

4.1 Predator Prey Model
Let’s say we have an ecosystem where both hares and lynxes live. Given simple assumptions for how hares
and lynxes change in number, we want to model the dynamics of the number of haresH(t) and the number
of lynxes L(t) in this ecosystem.

We begin by considering the hares. Let’s say the hares have a large food source which allows them to
reproduce at a rate proportional to the number of existing hares. Thus the number of hares increases at a
rate αH(t). However, lynxes prey on the hares. This predation occurs such that the more hares there are,
the more they are eaten by lynxes, but, also, the more lynxes there are, the more they eat the hares. Thus,
the number of hares decrease at a rate βH(t)L(t). Finally, we will assume the hares die at a faster rate from
being preyed upon by lynxes than they do from natural causes, so we need not include a natural death rate.

Now, let’s consider the lynxes. The lynxes only reproduce if a sufficient food source is present: the more
hares there are the more the lynxes will be able to reproduce. Thus the number of lynxes increase at a
rate δL(t)H(t). Finally we will assume lynxes have no natural predators in this ecosystem, and so their
population only decreases from a natural death rate. Thus the number of lynxes decrease at a rate γH(t).

Combining these contributions to the evolution of L andH , we have the system of differential equations

d

dt
H(t) = αH(t)− βH(t)L(t) = H(t)

(
α− βL(t)

)
, (33)

d

dt
L(t) = δL(t)H(t)− γL(t) = L(t)

(
δH(t)− γ

)
. (34)

Because Eq.(33) and Eq.(34) are nonlinear differential equations, we would have to solve them numerically
in order to determine H(t) and L(t). However, we can make progress by considering the dynamics of the
system near steady-state. We say our system is in steady-state if it remains the same for all time. In other
words, all time-derivatives are zero. For Eq.(33) and Eq.(34), the hare and lynx population is in steady-state
if

0 = H(t)
(
α− βL(t)

)
(35)

0 = L(t)
(
δH(t)− γ

)
, (36)

Solving Eq.(35) and Eq.(36), we find that the number of hares and the number of lynxes in the ecosystem do
not change for

H = 0, L = 0 or H =
γ

δ
, L =

α

β
. (37)

Thus we have two steady-states in this model.
Given the fact that we can’t solve Eq.(33) and Eq.(34) exactly, the question we want to answer is
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Question
What are the dynamics of the hare and lynx populations when the populations are near their

steady-states?

Since we have two steady-states, we have two cases to consider. We begin by considering the first case in
Eq.(37). We want to approximate the dynamical equations Eq.(33) and Eq.(34) whenH(t) is near 0 and L(t)
is near 0. To that end, we define h(t) and `(t) by

H(t) = h(t) and L(t) = `(t), (38)

where4 h(t)� 1 and `(t)� 1. Thus approximating Eq.(33) and Eq.(34) near this steady-state we have

d

dt
h(t) = αh(t) (39)

d

dt
`(t) = −γ`(t) (40)

where we dropped quadratic terms which are relatively negligible for h(t), `(t)� 1. Solving this system we
find

h(t) = h(0)eαt, `(t) = `(0)e−γt, (41)

which implies that when the hare and lynx populations are both almost dying off (i.e., both near 0), the hare
population can rebound to grow exponentially while the lynxes completely die off.

Let’s consider the second case in Eq.(37). We want to approximate the dynamical equations Eq.(33) and
Eq.(34) when H(t) is near γ/δ and L(t) is near α/β. To that end, we define h(t) and `(t) by

H(t) =
γ

δ
+ h(t) and L(t) =

α

β
+ `(t), (42)

where we will again take h(t) � 1 and `(t) � 1. Approximating Eq.(33) and Eq.(34) near this steady-state
and neglecting terms of quadratic order, we find

d

dt
h(t) =

βγ

δ
`(t) (43)

d

dt
`(t) = −αδ

β
h(t) (44)

This system of differential equations can be easily solved using the methods in Sec. 3, or simply by differ-
entiating the second equation and using the first equation. In either case, we find that the general solution
is

h(t) = h(0) cos (t
√
αγ) +

βγ

δ
√
αγ

`(0) sin(t
√
αγ), `(t) = `(0) cos(t

√
αγ)− αδ

β
√
αγ

h(0) sin (t
√
αγ) . (45)

Thus, we see that when the hare and lynx populations are near their non-zero steady-state values, each
population oscillates with a frequency √αγ. Moreover, given the form of Eq.(45), we can infer that the two
populations are out of phase by an amount which depends on α, β, γ, and δ.

Therefore, through the postulated model we have qualitatively reproduced5 the effects shown in Fig. 1.
Namely, that hare and lynx populations can oscillate and they oscillate out of phase with one another. The

4We will bypass the seeming nonsensical idea that there can be a number of hares and lynxes less than 1 and explore the math-
ematical implications of this assumption. This seeming inconsistency can be corrected by interpreting H(t) and L(t) as population
densities rather than numbers.

5To obtain quantitative reproduction, we would need to estimate the values of α, β, γ, and δ.
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method that we employed to study the dynamics of this nonlinear system is called linearization. It is very
similar in spirit to the method introduced in the first assignment to perturbatively find the roots of a cubic
polynomial and can thus be seen as a part of the field of perturbation theory.

Figure 2: Plot of numerical solutions (via Euler’s method) to Eq.(33) and Eq.(34). We chose α = 4,
β = 2, γ = 3, and δ = 3, with H(0) = 2.5 and L(0) = 1.5. The lynx population is shown
in blue, and the hare population is shown in orange. We note that the evolution of H(t) and L(t)
is clearly periodic although the evolution is not sinusoidal. Code used to generate plot is online at
http://users.physics.harvard.edu/ mwilliams/physIII 2017.html

However, we do not need to linearize our dynamical equations in order to get a sense of the dynamics
in this system, and the hare and lynx populations do not need to be close to their steady-states to exhibit
oscillations. It is certainly true that Eq.(45), is only valid for H(t) and L(t) near γ/δ and α/β, respectively,
but, we can solve Eq.(33) and Eq.(34) numerically to find more general cases of oscillatory behavior. We
present an example of such behavior in Fig. 2.
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