
Massachusetts Institute of Technology MITES 2017–Physics III

Lecture 01: Mathematical Modeling and Physics

In these notes, we define physics and discuss how the properties of physical theories suggest best practices
for learning and applying them.

1 What is Physics
For the next six weeks, we will be studying physics–specifically the physics of oscillatory and wave phenomena–
but before we begin, it will be useful to establish some groundwork: If we’re going to be studying physics,
we better know what it is and how it is different from subjects we’ve studied before. So before trying un-
derstand oscillatory and wave phenomena, we will explore the following questions

Framing Questions
What is physics? How is it different from other disciplines? How should we study it?

To answer this question, we will begin with a non-physics example which nevertheless uses mathematics
and mathematical modeling in very much the same way we use them in physics. This example will illustrate
the basic features of how and why learning physics is different from learning biology or history.

1.1 Model of Bacterial Growth
Imagine you are a student who has acquired a solid understanding of calculus but is woefully under-read in
the history and understood science of biology. You make up (or, at least, try to make up) for these deficiencies
by being quite inventive and logical.

You are working in a bacteriology lab for the summer. The senior scientist at the lab tells you to to answer
some question about the metabolic properties of a bacteria (which we call ‘bacteria α’), but you instead
become intrigued by how the bacteria are growing. Their colonies ensconced in nutrient plates seem to be
expanding before your eyes.

(a) Bacterial colony at time t0 (b) Bacterial colony at time t0 + 1 hr

Figure 1: Bacterial growth in nutrient plates. The aggregate of pill shaped lines represents the bacteria
colony and the large circular border represents the outline of the nutrient plates in which the bacteria grow.

In particular during the first hour, you watch the bacteria and measure the diameter of the roughly circular
shape the colony makes on the nutrient plate. You take these measurements at the start and at the end of
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the hour, and you notice that the ratio between the final diameter d(t0 + 1 hr) and the initial diameter d(t0)
is ∼ 1.411. You do this again in the next hour and you find that the ratio of the diameters at the end and
the beginning of the hour is again 1.4111. This pattern in observed phenomena, suggests there should be a
mathematical model associated with this system, so you ask yourself

Question: How can we mathematically model the growth in area of the bacteria popula-
tion?

To begin, you start consolidating your observations. Having mastered geometry and algebra, you recog-
nize the measured ratio 1.411 between each subsequent diameter is approximately

√
2, and you also know

that a circle of diameter d(t) has an area A(t) = πd(t)2/4. Thus, from your measured diameters you create
the following table of your observations.

Time (hrs) Diameter (cm) Area (cm2)
0 1.0 (π/4)×1.0
1 1.411 (π/4)×1.990
2 1.991 (π/4)×3.964
3 2.810 (π/4)×7.892

Table 1: Collected data for growth of bacteria

From this data you conclude that after each hour, the diameter of the bacteria population increases by a
factor of

√
2 (i.e., d(t + 1 hr)/d(t) =

√
2), and thus the area of the bacteria population increases by a factor

of 2:
A(t+ 1 hr)

A(t)
=
πd(t+ 1 hr)2/4

πd(t)2/4
= 2. (1)

Now, given your knowledge of calculus, you recognize that whenever a quantity doubles in a fixed
amount of time, the growth rate of the quantity must be proportional to the quantity itself. For example,
when you borrow money from a bank, the money you need to pay back increases by compound interest. So
that if you borrow $1.00 today, then after a month you might owe $1.05. For basic borrowing, the amount
you owe the bank will double after a fixed amount so that as time goes on you accumulate more debt faster
and faster. The basic reason for this is that the rate at which your debt increases is proportional to the amount
of your current debt.

With this knowledge of how the growth rate of the area relates to the area itself, you decide to postulate
a principle of bacterial growth. Taking A(t) to be the area of the bacteria colony at a time t and dA(t)/dt to
be the growth rate of that area at that same time t, you write this principle mathematically as

Principle of Bacteria Growth (Mathematical Formulation): If a colony of bacteria α is in a cul-
ture dish with sufficient nutrients, then the area A of the colony evolves in time according to

dA(t)

dt
= kA(t), (2)

for some k of units 1/hr.

Eq.(2) is a good starting point for a mathematical model of bacterial growth. However, it contains an un-
known quantity k. Fortunately, you surmise that it should be possible to determine the value of k by making
proper use of your observations in Table 1. Namely, given the data in 1 you want to know what the theory
represented by Eq.(2) predicts for how long it takes the area of the bacterial colony to double; this prediction
will in turn constrain the value of k.

1If we were being careful about this, we would include error bars with this measurement, but we will forego them for this example.
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Again, given your calculus knowledge, you start by solving the differential equation Eq.(2). To do so,
you follow the basic algorithm:

dA(t)

dt
= kA(t)

1

A(t)

dA(t)

dt
= k [Divide by A(t)]∫ tf

t0

1

A(t)

dA(t)

dt
dt = k

∫ tf

0

dt [Integrate both sides from t = 0 to t = tf ]∫ A(tf )

A0

1

A
dA = k

∫ tf

t0

dt [Change variables in left integral]

ln
A(tf )

A0
= ktf [Compute integrals on both sides]. (3)

Taking the exponential of both sides of Eq.(3), you thus surmise that for a general time t the area of the
bacterial population grows as

A(t) = A0e
kt, (4)

where A0 is the area of the colony at the chosen initial time t = 0. If the area of the colony doubles after a
time td (which for this case is 1 hr), you realize that by Eq.(4) A(td) must equal 2A0. Thus, you find

2 =
2A0

A0
=
A(td)

A0
=
A0e

ktd

A0
= ektd . (5)

Taking the far LHS and the far RHS and solving for k, you obtain

k =
ln 2

td
. (6)

With your previous observations, consolidated into Eq.(1), you know that the doubling time is td = 1 hr.
You thus claim k is given by

k = ln 2 hr−1. (7)

With this result, you have answered your original question. The area of the bacteria population grows ac-
cording to Eq.(4) where k is given by Eq.(7) and A0 depends on our choice of an initial time.

But you’re not done yet. Now, you now want to see what else you can do with this principle. Knowing
that the bacteria are in a finite circular plate of diameter 15 cm, you realize there is a constraint in this setup
on how much the bacteria can grow according to Eq.(2). You decide to test this by predicting how long it
would take the bacteria (which currently comprises an area with diameter of about 3 cm) to reach the limits
of the culture dish. Given Eq.(4) and Eq.(7), you predict it should take a time

tf =
1

k
ln
Af

A0
≈ 4.6 hr, (8)

where Af/A0 = (15/3)2 = 25, to reach the limits of the dish. You look at your watch to check the time and
finally decide to leave the lab and go on a very long lunch. When you return...

1.2 Structure of Physics
Well you (reader) get the idea. This example was meant to illustrate the dual processes of induction and de-
duction and how they allow us to mathematically model and make predictions about the world. Moreover,
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although this example doesn’t at all deal with physics, it is nevertheless an example of mathematical model-
ing and therefore provides a conceptually simple framework by which to develop a structural understanding
of physics.

• Induction and Deduction: Induction refers to the process of developing or postulating general laws
based on specific observations. Deduction refers to the process of deriving specific predictions from
general laws.
Although induction and deduction do not characterize all of science, the two concepts largely describe
how physicists (and quantitative scientists in general) formulate theories.
For example, in the previous section, a theory of bacterial growth was formulated by first observing
the growth of bacteria, extrapolating a principle from the properties of this growth (induction), and
then using the principle to make a testable prediction (deduction). We depict the cyclical nature of
this process below.

Figure 2: The cyclical relationship between the observations which motivate the
development of principles which are, in turn, used to obtain predictions which
are then checked against more observations.

It is important to take note of this structure because it largely characterizes how physicists in all dis-
ciplines formulate theories. For example, Newton’s laws are principles (gleaned from observations of
physical phenomena) which produce predictions which can be compared with other observations. We
should mention that this process in practice is rarely ever this clean, and the physicist often jumps be-
tween stages as he works through trial-and-error to find the proper principles or predictions by which
to model a phenomena.
Also, sometimes physicists don’t directly use observations to develop physical principles but rely on
intuition and abstractions. Einstein’s formulations of Special and General Relativity began with such
an intuition [1].

• Principles and Predictions: This example was also meant to illustrate the difference (with regard to
a hierarchy of importance) between principles and predictions. Principles are taken as assumptions
and are often used as the starting points of a theory. From these starting points one extends the theory
in various directions to obtain predictions (see Fig. 3 below). In this way we consider principles as
more fundamental than predictions. However, understanding a theory often amounts to understand-
ing both the principles and predictions, in addition to the ways they are connected.
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Figure 3: Predictions in a theory extend from and are less “fundamental” than the
principles. This does not mean predictions are less important; only that they are
not the deductive starting point of the theory. In this diagram the arrows stand
for a mathematical derivation.

We can illustrate the relationship between predictions and principles with a non-physics related ex-
ample. Consider the following valid logical argument:

1. A is true.
2. If A is true, then B is true.
3. B is true

In this argument, statement 1 serves the role of a premise which means it is not derived from any other
statement; to consider the validity of this argument, we simply take the premise as true. Similarly, in
physics, physical principles and laws are taken as true without any prior logical2 justification.
Statement 3 is the conclusion of this logical argument since it is deduced from the premise. The con-
clusion of a logical argument is analogous to a physical prediction or derived result in physics because
these physical predictions are deduced from physical principles.
What role does statement 2 play? It acts as a logical connection between statements 1 and 3 and thus
requires us to accept the truth of statement 3 if we accept the truth of statement 1. In physics, mathe-
matics serves the role of statement 2.

• Derivations and Mathematics: Some people state that mathematics is the language of physics to em-
phasize that, in a way very similar to how written language can be used to express qualitative ideas,
mathematics can be used to express ideas about change, geometry, and structure. However, in physics,
mathematics is more than just a symbolic method for expressing physical ideas; it also serves to embed
these idea in a sophisticated logical framework which then allows these ideas to be connected to other
ideas.
We see this most clearly in the way physical principles, expressed mathematically, allow us to derive
predictions for a mathematical theory. For example, when we we modeled bacterial growth, we used
calculus to not only express our starting principle as the differential equation Eq.(2), but to also derive
the prediction Eq.(8).
More generally the mathematics we use to make predictions in a theory vary by subject. To illustrate
this relationship, in the table below we list a few physical theories along with some of their associated
physical predictions and the mathematical frameworks used to derive them. We include our model of
bacteria growth (which is NOT a physical theory) as a comparison.

2By ”logical” we mean the philosophical definition of ”logic” rather than the colloquial meaning which is synonymous with ”ratio-
nal”.
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Table 2: Physical Theories: Principles and the Mathematics used to obtain Predictions

Principles Mathematics Example
Result/Prediction

Bacterial Growth Principle of
Bacterial Growth Calculus Time for Growth

Classical Mechanics
Newton’s Laws;
Newton’s Law of

Gravitation

Calculus; Linear
Algebra

Period of
Pendulum

Electromagnetism
Maxwell’s

Equations; Lorentz
Force Law

Vector Calculus;
Partial Differential

Equations

Electric field of
General Conductor

Table 3: *Our model of bacteria growth is not an actual theory because it does not follow from a physical
principle.

2 Considering and Learning Physics

(a) (b)

Figure 4: Two types of understanding: (a) Taking ideas and equations as distinct and learning them as such.
Leads to memorization and an inability to extend knowledge. (b) Understanding connections between ideas
and equations. Allows for less memorization and develops skills to extend knowledge.

This discussion of the structure of physics is important because it motivates a particular way of studying
and engaging with the subject. In particular, it should discourage an unfortunately typical way of learning
the subject and encourage a way which is more natural and, in the long run, more useful.

In some physics classes, the main results which define a subject are sometimes employed in a discon-
nected manner which suggests that these results were found and hence should be applied independently
of one another. A standard example is “The Big Four” equations of kinematics which are often presented
as distinct. However, these kinematic equation can all naturally be subsumed into the equation for constant
acceleration:

x(t) = x0 + v0t+
1
2at

2

v(t) = v0 + at

v2f = v20 + 2a(xf − x0)
x(t) = x0 +

1
2 (v(t) + v0)

 → d2

dt2
x(t) = a (9)

This is general in physics; all results in a physical theory (outside the physical principles and assumptions)
are derived from and hence connected to other results. Thus in learning physics we should not memorize
the results independent of one another, but should rather understand how they are connected. We depict
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this perspective in Fig. 4
Fig. 4 is meant to suggest that what you learn in a subject becomes more useful when you understand

how the topics and ideas which define the subject are connected. One benefit of learning this way is that if
you forget something (e.g., imagine if a node in Fig. 4 was erased), then since you understand how results
in the subject are connected, you can rederive what you have forgotten from all that you still know.

To put it plainly: only memorizing equations is an inefficient way to learn a subject which has as
much manifest logical structure as physics does. Instead, efficiently learning physics entails learning
the structure of the subject and how theorems and physical results are derived and are related to one
another.

Therefore, understanding in physics is not merely represented by what equations or ideas you know,
but more truly in what you know about the connections between these equations and ideas. It is only by
understanding these existing connections that you will ever have the knowledge and skills to move beyond
them toward a comprehension of something you have never before seen.

3 What is Physics? Part II
Our model of bacterial growth, although being a solid piece of mathematical modeling, cannot be considered
physics because the model is not grounded in any physical principles3. Examples of physical principles
you’ve heard of before are

– Laws of Thermodynamics
– Schrödinger Equation
– Newton’s Second Law

Thus given that we get physics when we combine physical principles with mathematical modeling, we can
now answer the question posed at the very beginning of these notes:

Physics (definition):
Physics is a scientific discipline which uses mathematically formulated physical principles
to model, explain, and predict phenomena in the inanimate world.

For example, the various foundational subject in physics can answer questions such as

– Why do hot objects emit light?
– Why are certain elements non-reactive?
– Why is the period of a pendulum independent of its mass?

In this class we will be concerned with questions of the last kind, namely questions which deal oscillatory
phenomena. As in the non-physics example, presented in these notes we will use observable situations
to motivate our exploration of each new topic we study. As always we will emphasize how the topics are
connected to the principles of physics and also attempt to understand some basic physical results.

References
[1] A. Einstein, “On the method of theoretical physics,” Philosophy of science, vol. 1, no. 2, pp. 163–169, 1934.

3We introduced the ”principle of bacterial growth” is not a physical principle. It was introduced to to illustrate how principles are
used in mathematical modeling
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