
Massachusetts Institute of Technology MITES 2017–Physics III

Lecture 09: Maxwell’s Equations and Electromagnetic Waves

In these notes, we review the basic phenomena of electromagnetism and show how Maxwell’s equations
lead to the wave equation for electromagnetic waves. We conclude by discussing some basic properties of
electromagnetic waves.

1 Electricity, Magnetism, and Light
In the last lesson, we motivated our discussion of traveling waves by noting that we are able to hear sound
because pressure waves propagate through the air from their sources to our ear drums. Similarly, we are
able to see objects because electromagnetic waves propagate from their sources and into the rod and cone
cells of our eyes. Both sound and light are wave phenomena and thus can be presumed to obey the wave
equation we previously derived or at least one similar to it1. However, the connection between light and
the propagating degrees of freedom responsible for its properties is not as clear as the connection between
sound and pressure waves.

Figure 1: How are capacitors and bar magnets related to electromagnetic waves?

Our understanding of bar magnets and static electricity does not at all indicate that such phenomena are
fundamentally related to the phenomena which allows us to see. If light truly consists of electromagnetic
waves, how is that manifestation of electromagnetism related to the more pedestrian manifestations which
power electronics and medical devices (like NMR machines). This was the problem James Clerk Maxwell
faced (and solved) in the 19th century, and it is the problem we will discuss in these notes.

1This is not exactly true. Simply because a quantity propagates as a wave does not mean it obeys the specific wave equation we have
been discussing. There are many different wave equations, and recognizing wave-like properties and then determining the specific
equation governing those properties are two different things. Indeed, moving from the former to the latter is usually quite difficult.
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2 PRIMER ON VECTOR CALCULUS M. WILLIAMS

Framing Question:
What is the physics of light waves? More, specifically, how are electromagnetic waves connected to

electricity and magnetism?

2 Primer on Vector Calculus
Before we consider the physics of electromagnetism we need to complete a short review of the relevant
mathematics.

Recalling the table we wrote down in Lecture notes 01, we know that the mathematics of electromag-
netism consists of vector calculus and partial differential equations. We have already had some exposure
to partial differential equations through our study of the wave equation and its solutions, and it turns out
much of the methods we studied in that context can be applied to electromagnetism. Thus, what is left for
us to study is the vector calculus which defines the equations of electromagnetism.

Table 1: Physical Theories: Principles and the Mathematics used to obtain Predictions

Principles Mathematics Example
Result/Prediction

Electromagnetism
Maxwell’s

Equations; Lorentz
Force Law

Vector Calculus;
Partial Differential

Equations

Electric field of
General

Conductor; Speed
of Light

The major results of vector calculus can be seen as an extension of the major result of single-variable
calculus: The fundamental theorem of calculus. In one form, the theorem states∫ b

a

d

dx
F (x) dx = F (b)− F (a) (1)

In other words, integrating the derivative of a function from one point in the domain to another point is
equal to the difference between the function’s value at each of those points. Eq.(1) is all well and good for
single-variable functions, but how would we extend it to consider functions of many variables or functions
written as vectors? This is the question we will answer in the subsequent sections

Question:
How can we develop a ”fundamental theorem of calculus” in higher dimensions? for multivariable

functions? for functions which are vectors.

2.1 Scalar Functions and Vector Fields
To formulate generalizations of Eq.(1), we must first discuss generalizations of the concept of a function. By
this point in your education, you should be very familiar with the function y = f(x) which (if it is a valid
function) returns a single scalar value for every single value x. We can easily generalize this function to a
multivariable function w = φ(x, y, z) which returns a single scalar value for every value of (x, y, z). Namely,
φ(x, y, z) is a function in which the independent variables consist of points in R3 (Euclidean space). Some
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2 PRIMER ON VECTOR CALCULUS M. WILLIAMS

examples of multivariable scalar functions are

φ(x, y, z) = x+ y + z, φ(x, y, z) = x2y + sin(4z), φ(x, y, z) =
1√

x2 + y2 + z2
. (2)

Besides defining scalars in Euclidean space, we know it is possible to define vectors as well. You are
likely used to to considering constant vectors like ~v = (4, 1, 3) where 4 is the component of the vector along
the x-axis, 1 the component along the y-axis, and 3 the component along the z-axis. We can write this vector
in terms of unit vectors as

v = (4, 1, 3) = 4x̂ + ŷ + 3ẑ, (3)

where x̂ = (1, 0, 0), ŷ = (0, 1, 0), and ẑ = (0, 0, 1) are the unit vectors in the x, y, and z direction, respectively.
Such vectors are the same regardless of how we translate them or move them around in space. Now, when
we have a vector whose value depends on the point in Euclidean space at which we evaluate the vector, then
we have what is known as a vector field. A vector field F(x, y, z) is a vector which is a function of points
(x, y, z) in space. In general, we take the vector to have the same number of components as it has arguments.
Thus the vector field F(x, y, z) has three components Fx, Fy , Fz and each component is a function of x, y,
and/or z. Writing this vector field in component form we have

F(x, y, z) = (Fx(x, y, z), Fy(x, y, z), Fz(x, y, z)) = Fx(x, y, z)x̂ + Fy(x, y, z)ŷ + Fz(x, y, z)ẑ. (4)

Some examples of vector fields are

F(x, y, z) = (x, y, z), F(x, y, z) = sin(xz)x̂ + cos(y)ẑ, F(x, y, z) =
xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2
. (5)

2.2 Derivative operators
With our definitions of scalar fields and vector functions, we can now move on to define the various deriva-
tive operators which can be applied to these fields. We will begin with the mathematical definition of these
operators, and in the next section will use their integral theorems to understand them intuitively.

All of these derivative operators make use of a particular derivative operator cryptically2 termed nabla
or del. This operator is defined as

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
= x̂ ∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
. (6)

We note that nabla is composed of partial derivatives—the same kind of derivatives which appear in the
wave equation. Just as a review, the partial derivative of a function with respect to a variable x is simply
the derivative with respect to x with all other variables held constant. For example, the various partial
derivatives of the function φ(x, y, z) = x2y + sin(4z) are

∂φ

∂x
= 2xy,

∂φ

∂y
= x2,

∂φ

∂z
= −4 cos(4z). (7)

When we apply Eq.(6) directly to a scalar function, it is said we are taking the gradient of the scalar
function. From Eq.(7), we see that applying ∇ to φ(x, y, z) yields

∇φ = (2xy, x2,−4 cos(4z)) = 2xy x̂ + x2 ŷ − 4 cos(4z) ẑ (8)

We note then that applying the ∇ operator to a scalar function φ results in a vector field ∇φ.
Our second derivative operator is called the divergence and it is only applied to vector fields. The di-

2Wikipedia tells me the term ”nabla” comes from the Hellenistic Greek word for ”harp” which is apparently what ∇ looks like.
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2 PRIMER ON VECTOR CALCULUS M. WILLIAMS

vergence of the arbitrary vector field Eq.(4) is denoted by ∇ · F and is defined as

∇ · F ≡ ∂Fx

∂x
+
∂Fy

∂y
+
∂Fz

∂z
. (9)

For example, the divergence of F = x x̂ + yŷ + zẑ is

∇ ·
(
x x̂ + yŷ + zẑ

)
=

∂

∂x
x+

∂

∂y
y +

∂

∂z
z = 3. (10)

We note that when we took the divergence of the vector field in this case, we obtained a scalar number; in
general, taking the divergence of a vector field yields a scalar function.

Our third derivative operator is called the curl and it also only can be applied to vector fields. The curl
of the arbitrary vector field Eq.(4) is denoted by ∇× F and is defined as

∇× F = x̂

(
∂Fz

∂y
− ∂Fy

∂z

)
+ ŷ

(
∂Fx

∂z
− ∂Fz

∂x

)
+ ẑ

(
∂Fy

∂x
− ∂Fx

∂y

)
. (11)

More compactly we can think of∇×F as the cross-product between∇ and F. In this case, we still get Eq.(??)
as a definition, but we can write the curl of F as

∇× F =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
Fx Fy Fz

∣∣∣∣∣∣∣ . (12)

For example, computing the curl of the F(x, y, z) = sin(xz)x̂ + cos(y)ẑ gives us

∇× F =

∣∣∣∣∣∣∣
x̂ ŷ ẑ
∂

∂x

∂

∂y

∂

∂z
sin(xz) 0 cos(y)

∣∣∣∣∣∣∣ = − sin(y) x̂− x cos(xz) ŷ. (13)

We note that, by Eq.(12), taking the curl of a vector field yields another vector field.
The final differential operator which will be relevant for our study of Maxwell’s equations is the Lapla-

cian. The Laplacian, denoted by ∇2 is defined as the divergence of the gradient and thus is a scalar differ-
ential operator. For example, the Laplacian of a field φ is

∇2φ = ∇ · ∇φ = ∇ ·
(
∂φ

∂x
x̂ +

∂φ

∂y
ŷ +

∂φ

∂z
ẑ

)
=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
. (14)

Thus we can generally define the Laplacian as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (15)

The Laplacian (because it is a scalar operator) can also be applied to vector fields.
We can apply these derivative operators in various combinations to scalar functions and vector fields,

and the various ways we can apply these operators are associated with various identities in vector calculus.
For example, it’s possible to show that for an arbitrary function φ that the curl of the gradient is zero:

∇× (∇φ) = 0. (16)

4



2 PRIMER ON VECTOR CALCULUS M. WILLIAMS

And for an arbitrary vector field F the divergence of the curl is zero:

∇ · (∇× F) = 0. (17)

A final identity which will be needed to derive the electromagnetic wave equation involves the curl of a curl.
That is, for an arbitrary vector field F, we can show

∇× (∇× F) = ∇(∇ · F)−∇2F. (18)

2.3 Theorems of Vector Calculus
With our above outlined derivative operators, we are now prepared to answer the question posed at the be-
ginning of this section: How can we develop a ”fundamental theorem of calculus” in higher dimensions/for
scalar functions/for vector fields? If you take a course in multivariable calculus, you will spend the entire
semester learning about such generalizations, but for our purposes we will only state the results.

The first result is called the fundamental theorem of line integrals or the gradient theorem:∫ rf

r0
d` ˆ̀ · ∇φ = φ(rf )− φ(r0), (19)

where rf = (xf , yf , zf ) and r0 = (x0, y0, z0) denote the final and initial positions, respectively, of a curve in
Euclidean space. The vector ˆ̀ is a unit vector tangential to the curve along a point in the integration.

Next, we have the divergence theorem:∫
V

dV ∇ · F =

∫
S

dA n̂ · F, (20)

where V defines a volume in Euclidean space and S is the boundary of that volume (for example, if V is the
volume of a sphere, then S is the surface of the sphere). The vector n̂ is a unit vector normal to the surface
S at a point in the integration.

Finally, we have Stokes’ theorem (for 3D space)∫
S

dA n̂ · ∇ × F =

∮
Γ

d` ˆ̀ · F, (21)

where S defines a surface in Euclidean space and Γ denotes the boundary of that surface (for example, if
S is the area of a circle, then Γ is the perimeter of the circle). The vectors n̂ and ˆ̀ are defined similarly to
their definitions in Eq.(20) and Eq.(19). The symbol

∮
denotes the fact that we are integrating over a ”closed

curve” (i.e., one where the endpoints are the same as the starting points) rather than an open curve.
As for terminology, we term the surface integral on the right-hand side of Eq.(20) the flux of the vec-

tor field through the defined surface, and we term the line integral on the right-hand side of Eq.(21) the
circulation of the vector field over the defined curve:

Flux through S =

∫
S

dA n̂ · F, (22)

Circulation around Γ =

∮
Γ

d` ˆ̀ · F (23)
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2 PRIMER ON VECTOR CALCULUS M. WILLIAMS

2.4 Meaning of Derivative Operators
From the above theorems, we can develop some intuition for the meanings of the previously defined deriva-
tive operators. First, we begin with the fundamental theorem of calculus:∫ xf

x0

dx
dF

dx
= F (xf )− F (xo) (24)

Presuming we didn’t already have such a definition, we could use Eq.(24) to establish an intuitive definition
of the derivative. If we take the domain of points over which we’re integrating to be very small (i.e., take
|xf − x0| to be very small), then we can approximate the integral as dF/dx evaluated at the point x0 (or xf )
multiplied by the space of integration xf − x0.

F (xf )− F (xo) =

∫ xf

x0

dx
dF

dx
' (xf − x0)

dF (x0)

dx
(25)

This approximation gets better and better the closer xf is to x0. In fact, dividing Eq.(25) by xf − x0 and
taking the limit as xf → x0 should give us an exact result. Therefore, we find

lim
xf→x0

F (xf )− F (x0)

xf − x0
=
dF (x0)

dx
. (26)

Eq.(26) establishes what we already knew about derivatives: derivatives are the change in a function divided
by the change in the argument of the function at a specific point, or, less verbosely, they are the instantaneous
rate of change in the function.

We can use similar procedure to establish intuitive definitions of the gradient, divergence, and curl op-
erators. The definition of the gradient is most similar to the definition of the derivative. From Eq.(19), we
have

lim
`→0

φ(r0 + ` ˆ̀)− φ(r0)

`
= ˆ̀ · ∇φ(r0), (27)

where ` = ` ˆ̀, with ` being the length of the vector ` and ˆ̀ being the unit vector in the direction of `. We
thus find that, like the derivative, the gradient of a function at a point is the rate of change of that function
at that point, except with one difference from the derivative: the gradient has direction. Computing the dot
product between the gradient and a unit vector ˆ̀ gives us the rate of change in the specific direction defined
by ˆ̀.

Using Eq.(20), we can find that the divergence at a point r0 is equal to

∇ · F(r0) = lim
∆V→0

1

∆V

∫
S

dA · F = flux volume-density, (28)

where ∆V is a small volume-element surrounding r0 and S is the surface area of that volume element. From
the definition of flux in Eq.(22), we see that the divergence of a vector field at a point is the flux density (for
volume) of the field at that point.

Similarly, using Eq.(21), we find that the curl at a point r0 and in a direction n̂ is

∇× F(r0) · n̂ = lim
∆A→0

1

∆A

∮
Γ

d` ˆ̀ · F = circulation area-density, (29)

where ∆A is a small area-element surrounding r0, n is a unit vector which is normal to that area element,
and Γ is the closed curve forming the boundary of that area. From the definition of circulation in Eq.(23),
we see that the curl of a vector field at a point is the circulation density (for area) of the field at that point.
Like the gradient, the curl also has direction, and thus the definition Eq.(29) gives the circulation density in
the direction n̂, the normal vector to the surface ∆A.
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3 MAXWELL’S EQUATIONS M. WILLIAMS

This was a very quick and cursory run through of the major results of vector calculus, so don’t worry if
you don’t understand everything just mentioned. It takes time and many examples to develop a conceptual
understanding of what gradients, divergences, and curls actually represent, but we will mostly be using
these derivative operators in a mathematical capacity.

3 Maxwell’s Equations
As shown in Table 1, the principles of electromagnetic theory are codified into a set of equations called
Maxwell’s equations and an additional equation termed the Lorentz force law. The Lorentz force law tells
us how electric and magnetic fields affect the dynamics of charged particles. Here, we will not be concerned
with the dynamics of charged particles, so we will be focusing on Maxwell’s equations. We will present and
discuss each one in turn.

• Gauss’s Law of Electric fields

Figure 2

∇ · E =
ρ

ε0
(30)

In Eq.(30), E is the electric field, ρ is the electric charge density, and ε0 is a physical constant. This law
determines how charge distributions ρ create electric fields which extend outward from the location
of the distribution. The manifestation of this law you’re likely most familiar with is magnitude of the
electric field E at a point r created by a charged particle Q at a point r0:

|E(r)| = Q

4πε0|r− r0|2
. (31)

Using the integral form of Eq.(30), it is possible to derive Eq.(33) in addition to the electric fields for
many general charge distributions.

• Gauss’s Law of Magnetic fields

∇ · B = 0 (32)

Eq.(32) basically states that there is no charged particle which creates magnetic fields in the same
way that electric charges create electric fields. Such a charged particle would be termed a magnetic
monopole, and as far as current experimental physics is concerned such a particle is entirely conjec-
tural.
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3 MAXWELL’S EQUATIONS M. WILLIAMS

Figure 3

|B(r)| 6= Qm

4πε0|r− r0|2
[Magnetic monopoles do not exis]. (33)

• Faraday’s Law

Figure 4: Bar magnet moving to the right generates an opposing electric field in a loop.

∇× E = −∂B
∂t

(34)

Eq.(34) states that a changing magnetic field induces an electric field. The negative sign is significant
here because it indicates the electric field is generated such that it creates a current which opposes the
magnetic field. You might have seen Eq.(34) written in integral form in which it states that a changing
magnetic flux (by the definition of flux in Eq.(22)) generates an electric potential difference around a
closed loop. This law expresses the basic physics of all electric generators (i.e., devices which convert
mechanical energy into electrical energy) and thus underlies much of the electronic infrastructure of
the late 19th century until today.

• Ampère- Maxwell Law

∇× B = µ0J + µ0ε0
∂E
∂t

(35)

In Eq.(35), J is the electric current area-density, and µ0 is the magnetic permeability, a physical constant.
Eq.(35) can be seen as a counterpart to both Eq.(30) and Eq.(34). Namely, it states how magnetic fields
are generated both by electric charge current densities and by changing electric fields. The phenomena
underlying the first term in Eq.(35) were first understood by Ampère and thus this part of the equation is
often called ”Ampère’s Law.” You might have seen this law expressed for current wires as

|B(r)| = µ0I

2π|r− r0|
(36)
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4 DERIVING ELECTROMAGNETIC WAVE EQUATION M. WILLIAMS

Figure 5 Figure 6

Figure 7: Magnetic field created by a current carrying wire in Fig. 5 and by a changing electric field Fig. 6.

where I is the current and |r − r0| is the distance between the current carrying wire and the point where
we evaluate the magnetic field. The second term was postulated by Maxwell in his treatise on electricity
and magnetism [1]. Before Maxwell, physicists and mathematicians working in electricity and magnetism
knew that changing magnetic fields could generate electric fields, but they did not believe the reverse could
happen. Maxwell’s addition turns out to be the crucial factor in explaining why the basic phenomena of
electricity and magnetic are related to light (i.e., electromagnetic) waves.

4 Deriving Electromagnetic Wave Equation
Now that we have collected the basic equations of electromagnetism, demonstrating that these equations im-
ply the existence of electromagnetic waves is quite easy. First, we specify we want to study electric and mag-
netic fields in free space far from any distributions of particles which could change their self-determining
dynamics. Such conditions would well model the contexts (such as outer space or across long distances) in
which we expect electromagnetic waves to propagate far from their sources.

Now, if we were to study these equations in locations of space very far from the charge distribution ρ
and the current density J, then we could set these charge and current terms to be zero in their respective
equations. The resulting set of equations are called the source-free Maxwell Equations:

∇ · E = 0 (37)
∇ · B = 0 (38)

∇× E = −∂B
∂t

(39)

∇× B = µ0ε0
∂E
∂t
. (40)

It is with these equations that we can derive the desired equation describing electromagnetic waves.
Taking the curl of Eq.(34), and using the identity Eq.(18) we find

∇× (∇× E) = −∇×
(
∂B
∂t

)
∇(∇ · E)−∇2E = − ∂

∂t
∇× B

−∇2E = −µ0ε0
∂2E
∂t2

, (41)

where we used the fact that spatial and partial derivatives commute in the second line and Eq.(40) and
Eq.(37) in the last line. By a similar calculation, taking the curl of Eq.(40) gives us an identical result for the
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5 BASIC PROPERTIES OF ELECTROMAGNETIC WAVES M. WILLIAMS

magnetic field. All together, the source free Maxwell equations imply that electric and magnetic fields far
from their sources obey the equations

∇2E = µ0ε0
∂2E
∂t2

and ∇2B = µ0ε0
∂2B
∂t2

. (42)

With Eq.(42) we have achieved our task of connecting basic electric and magnetic phenomena to electro-
magnetic waves. Eq.(42) are three-dimensional wave equations for the electric and magnetic fields. Thus,
the two equations have two features that our previous wave equations did not: one, the propagating degree
of freedom is a vector field, not a scalar function; two, the wave is propagating in three dimensions instead
of two. How these two new features affect the solutions to Eq.(42) can actually be easily extrapolated from
our understanding of one-dimensional waves of scalar functions as we will discuss below.

But first we note one result which can easily be inferred from Eq.(42), and was the first model-based
evidence that light consisted of propagating electric and magnetic waves. By dimensional analysis and our
understanding of wave equations, we can expect that the coefficient on the right-hand side of the equations in
Eq.(42) is the inverse-speed squared of the wave. Both the physical constants µ0 and ε0 were experimentally
determined in contexts having nothing to do (ostensibly) with wave phenomena and thus their appearance
in the above wave equations predicts the speed at which these electromagnetic waves should propagate. In
SI units we have ε0 = 8.854× 10−12 C2/N·m2 and µ0 = 4π× 10−7 N/A2. Therefore Eq.(42) implies that the
speed of wave propagation for electromagnetic waves is

c =
1

√
µ0ε0

≈ 3.00× 108 m/s. (43)

This was exactly the value of the speed of light which was experimentally determined decades before
Maxwell consolidated the equations of electromagnetism3. Thus Maxwell’s work provided a theoretical
model for why light has the speed it does.

5 Basic properties of Electromagnetic Waves
In this section we explore the properties of the solutions to Eq.(42). We begin by guessing (and affirming) a
solution to these equations and then we consider what Maxwell’s equations imply about the nature of this
solution. We begin with the guess (which is always reasonable for solutions to the basic wave equation) of
a sinusoidal function for the E wave equation:

E(r) = E0 sin(k · r− ωt) (44)

First checking that this equation satisfies the wave equation, we have

∇2E = µ0ε0
∂2E
∂t2

−k2 E0 sin(k · r− ωt) = −ω2µ0ε0E0 sin(k · r− ωt)
k2 = ω2µ0ε0 (45)

Thus Eq.(44) is a solution as long as
1

µ0ε0
≡ c2 =

|k|2

ω2
. (46)

In Eq.(44), E0 is a constant vector defining the amplitude of the wave. The vector k is called the wavevector
and it is a vector analog to the wave number of one-dimensional systems. The wave vector defines the
direction of propagation of the wave. For example, if k only had a z component, the wave would only vary

3See Fizeau-Foucault apparatus for a discussion of how this speed was experimentally determined in the mid 1850s.
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5 BASIC PROPERTIES OF ELECTROMAGNETIC WAVES M. WILLIAMS

in the z direction and hence we would say it propagates along the z axis. The vector r is defined as r = (x, y, z)
and it simply denotes the position at which we evaluate the wave. Finally ω is the angular frequency of the
wave motion.

To determine the important properties of Eq.(44), we need to return to Maxwell’s equations. Substituting
Eq.(44) into Eq.(37), we find

0 = ∇ · E
= ∇ · (E0 sin(k · r− ωt))
= E0 · k cos(k · r− ωt), (47)

from which we can infer E0 ·k = 0. Given that k defines the direction of wave propagation, this result implies
that the amplitude of the electric field is always perpendicular to the direction the wave is propagating.
Beginning from a magnetic field expression similar to Eq.(44), we would similarly find B0 ·k = 0. Thus, one
fundamental property of electromagnetic waves is that they are transverse waves and thus always have
amplitudes orthogonal to their direction of propagation.

Also substituting Eq.(44) into Eq.(39), we find

−∂B
∂t

= ∇× E

= ∇× (E0 sin(k · r− ωt))
= (k× E0) cos(k · r− ωt). (48)

Integrating, both sides of this result with respect to time (and dropping the constant of integration because
it is not physically important), we have

B = B0 sin(k · r− ωt), (49)

where we defined
B0 ≡

1

ω
(k× E0) =

1

c
(k̂× E0), (50)

with k̂ being the unit vector in the direction of k. Therefore, given the properties of cross products, we
see that another fundamental property of electromagnetic waves is that propagating electric fields are
always associated with propagating magnetic fields, and these two fields are perpendicular to both each
other and the direction of propagation. We depict both of these properties Fig. 8.

Figure 8: Electromagnetic waves propagating along the z axis. The two important properties of electromag-
netic waves is that the electric and magnetic field parts of the wave are perpendicular to each other and to
the direction of propagation.
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