
Massachusetts Institute of Technology MITES 2017–Physics III

Assignment 5: Fourier Series and Wave Equations

Due Wednesday July 12, at 9AM under Rene Garcı́a’s door

Preface: In this assignment, we build a better understanding of Fourier Series and derive various wave
equations.

1. Fourier Series identities
Using the identities

cos θ cosφ =
1

2
[cos(θ − φ) + cos(θ + φ)] and sin θ cosφ =

1

2
[sin(θ − φ) + sin(θ + φ)] , (1)

Compute the values of ∫ L

0

cos
(nπ
L
x
)
cos
(mπ
L
x
)
dx (2)

and ∫ L

0

sin
(nπ
L
x
)
cos
(mπ
L
x
)
dx (3)

in terms of the Kronecker delta δnm. (You might be able to guess the answer, but you also need to
derive it.)

2. Summing Fourier Series
In the previous assignment, we found that the function

y(x, 0) =

{
x for 0 ≤ x ≤ L/2
L− x for L/2 ≤ x ≤ L

(4)

could be expressed as the Fourier series

y(x, 0) =
4L

π2

∞∑
n=1

1

n2
sin
(nπ

2

)
sin
(nπ
L
x
)
. (5)

Download the notebook ”fourier series.nb” from the website. The notebook as it is generates a Taylor
Series approximation to sin(x).

(a) Run the first part of the code, and then annotate the subsequent lines which generate the Taylor
Series approximation to sin(x). Your annotation to explain the meaning of each line of code.

(b) Run the second part of the code, and using the format provided by the first part of the code,
write code which computes a Fourier Series approximation of Eq.(4). (We will take L = 1 for
simplicity.)

(c) Using the written code, plot three approximations of Eq.(4). Namely, approximate y(x, 0) by
i. the first five non-zero terms in Eq.(5)
ii. the first 10 non-zero terms in Eq.(5)
iii. the first 25 non-zero terms in Eq.(5)
and plot each of the three approximations.

(d) Comment on what plot you expect to see when you add more and more terms to your summation.
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3. Fourier Series with new Boundary Conditions
In discussing Fourier Series solutions to the wave equation, we derived Eq. 35 of Lecture notes 07 by
imposed the boundary conditions

y(x = 0, t) = 0, y(x = L, t) = 0, (6)

on our string.
For a different string system, one with free ends, the boundary conditions would be

∂

∂x
y(x = 0, t) = 0,

∂

∂x
y(x = L, t) = 0. (7)

(a) Show that the general solution to the wave equation for these boundary conditions is

y(x, t) =
α0

2
+

∞∑
k=1

[αn cos(ωnt) + βn sin(ωnt)] cos
(nπ
L
x
)

(8)

(b) If we are given the initial conditions y(x, 0) and ẏ(x, 0) what are αn and βn? Hint: You should use
one of the results from Problem 1 of this assignment.

(c) Using the above derived formulas, determine αn and βn for a string which begins at rest in the
position

y(x, 0) =


L

2
for 0 ≤ x < L/2

−L
2

for L/2 ≤ x ≤ L
(9)

(d) Extra Credit: By equating Eq.(9) and Eq.(8) (with αn and βn determined), and setting x = 0,
prove the identity

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · =

∞∑
n=1,3,5,...

(−1)n−1
2

n
(10)

4. String Wave Equation with Gravity
Review the derivation of the ”Wave Equation for Transverse Waves” in the Lecture 07 notes. In the
associated system, the masses were moving vertically but we did not consider them under the influence
of gravity.For this problem, we will assume their is a constant gravitational field in the system.

(a) Using the derivation in the lecture notes as a model, derive the following wave equation for a
string in a constant gravitational field:

µ
∂2

∂t2
y(x, t) = T

∂2

∂x2
y(x, t)− µg. (11)

(b) Consider our string in the presence of gravity to be at rest. Given the boundary conditions,

y(x = 0, t) = 0, y(x = L, t) = 0, (12)

what is y(x), the function the rope makes in space?
(c) Fig. 1 depicts the system in (b) at rest. Determine the value of θ in terms of the parameters of the

system. (Hint: You should first determine the relationship between the slope of the string and the angle θ.)
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Figure 1: String in a gravitational field

5. Nonlinear Wave Equation
Review the derivation of the ”Wave Equation for Transverse Waves” in the Lecture 07 notes. In com-
pleting the derivation of the wave equation, we took the ”strong coupling” limit `R � a (i.e., the rest
length of the spring is much less than the spacing between the masses). Here we will take the weak
coupling limit where

`R = a, (13)

(i.e., the rest length of the spring is the same as the spacing between the masses). We will also take
|yj − yj−1| � a, for all j.

(a) Under the above listed conditions, and working through a calculation similar to that in the notes,
derive the nonlinear wave equation

µ
∂2y

∂t2
=
T

2

∂

∂x

[(
∂y

∂x

)3
]
. (14)

(b) Does the solution y(x, t) = Aei(kx−ωt) solve Eq.(14)? Would any sinusoidal solution solve it?
(Explain why not)
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