First and Last Name:

2. Simple Harmonic Motion

A particle undergoing simple harmonic motion has the position

$$
x(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
$$

This position can also be written as $x(t)=E \cos \left(\omega_{0} t-\phi\right)$ where $E>0$. What are E and ϕ in terms of A and B ?

Solution: Using the sum of angles formula we find

$$
\begin{align*}
x(t) & =E \cos \left(\omega_{0} t-\phi\right) \\
& =E \cos \phi \cos \left(\omega_{0} t\right)+E \sin \phi \sin \left(\omega_{0} t\right) . \tag{1}
\end{align*}
$$

Equating this result to the given position, we find

$$
\begin{equation*}
E \cos \phi \cos \left(\omega_{0} t\right)+E \sin \phi \sin \left(\omega_{0} t\right)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \tag{2}
\end{equation*}
$$

which implies that $E \cos \phi=A$ and $E \sin \phi=B$. Using trigonometric identities and the condition $E>0$, we then find

$$
\begin{equation*}
E=\sqrt{A^{2}+B^{2}}, \quad \phi=\tan ^{-1} \frac{B}{A} . \tag{3}
\end{equation*}
$$

First and Last Name:

3. Effective spring constant

Two springs with spring constants k_{1} and k_{2} are connected in parallel as shown in Fig. 1 What is the

Figure 1
effective spring constant $k_{\text {eff }}$? In other words, if the mass is displaced by x, find the $k_{\text {eff }}$ for which the force equals $F=-k_{\text {eff }} x$.

Solution: If the mass is displaced a distance x from its equilibrium position, the spring with spring constant k_{1} exerts a restoring force $-k_{1} x$. Similarly, the spring with spring constant k_{2} exerts a restoring force $-k_{2} x$ on the mass. Thus the net force on the mass is

$$
\begin{equation*}
F_{\text {net }}=-k_{1} x-k_{2} x=-\left(k_{1}+k_{2}\right) x . \tag{4}
\end{equation*}
$$

Therefore the effective spring constant is $k_{\text {eff }}=k_{1}+k_{2}$.

First and Last Name:

\qquad

4. Superposition

Let $x_{1}(t)$ and $x_{2}(t)$ be solutions to the differential equation

$$
\ddot{x}^{2}(t)=b x(t)
$$

where b is a constant. Is the linear combination $x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)$, where c_{1} and c_{2} are constants, a solution to the differential equation? (Provide a calculation showing why or why not).

Solution: If x_{1} and x_{2} solve the differential equation $\ddot{x}^{2}(t)=b x(t)$, then we have

$$
\begin{equation*}
\ddot{x}_{1}^{2}(t)=b x_{1}(t) \quad \ddot{x}_{2}^{2}(t)=b x_{2}(t) \tag{5}
\end{equation*}
$$

For $x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)$ to be a solution to the differential equation, it too must satisfy the equations above. Checking whether it does, we have

$$
\begin{gather*}
{\left[\frac{d^{2}}{d t^{2}}\left(c_{1} x_{1}(t)+c_{2} x_{2}(t)\right)\right]^{2} \stackrel{?}{=} b\left[c_{1} x_{1}(t)+c_{2} x_{2}(t)\right]} \\
\quad\left(c_{1} \ddot{x}_{1}+c_{2} \ddot{x}_{2}\right)^{2} \stackrel{?}{=} b c_{1} x_{1}+b c_{2} x_{2} \\
c_{1}^{2} \ddot{x}_{1}^{2}+2 c_{1} c_{2} \ddot{x}_{1} \ddot{x}_{2}+c_{2}^{2} \ddot{x}_{2}^{2} \stackrel{?}{=} b c_{1} x_{1}+b c_{2} x_{2} \\
c_{1}^{2} b x_{1}+2 c_{1} c_{2} \ddot{x}_{1} \ddot{x}_{2}+c_{2} x_{2} \neq b c_{1} x_{1}+b c_{2} x_{2} \tag{6}
\end{gather*}
$$

where in the last line we used Eq. (5). Thus the linear combination $c_{1} x_{1}(t)+c_{2} x_{2}(t)$ does not satisfy the differential equation and is not a solution to it.

First and Last Name:

5. An Anti-Hookean oscillator

A particle of mass m and at a position x is subject to a force

$$
F(x)=+k x
$$

with $k>0$.
(a) What is the most general form of $x(t)$ in terms of the parameters of the system?
(b) The particle begins at x_{0} and after long times (i.e., $t \rightarrow \infty$), the particle is at $x=0$. What is the particle's initial velocity?

Solution: The equation of motion of this system is $m \ddot{x}-k x=0$, or

$$
\begin{equation*}
\ddot{x}-\frac{k}{m} x=0 \tag{7}
\end{equation*}
$$

Finding the general solution by guessing a general exponential and fixing its parameters, we find

$$
\begin{equation*}
x(t)=A e^{t \sqrt{k / m}}+B e^{-t \sqrt{k / m}} \tag{8}
\end{equation*}
$$

If the particle begins at x_{0}, we have $A+B=x_{0}$. If the particle is at $x=0$ when $t \rightarrow \infty$, then we have $A=0$. Thus, the specific solution is

$$
\begin{equation*}
x(t)=x_{0} e^{-t \sqrt{k / m}} \tag{9}
\end{equation*}
$$

and the particle's initial velocity is $v_{0}=-x_{0} \sqrt{k / m}$.

First and Last Name:

6. Exponential force

A particle of mass m is attached to a spring of spring constant k and is subject to another external force $F(t)=F_{0} e^{-b t}$. The equation of motion of the system is

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x=\frac{F_{0}}{m} e^{-b t} \tag{10}
\end{equation*}
$$

where $\omega_{0}^{2}=k / m$. Guess a solution of the form $x(t)=A e^{\alpha t}$ and determine what A and α should be in order for this solution to satisfy the above differential equation.

Solution: Guessing a solution of the form $x(t)=A e^{\alpha t}$ and plugging it into the equation of motion we find

$$
\begin{equation*}
\left(\alpha^{2}+\omega_{0}^{2}\right) A e^{\alpha t}=\frac{F_{0}}{m} e^{-b t} \tag{11}
\end{equation*}
$$

In order for this equation to be true for all time, we need to take $\alpha=-b$ and $A=F_{0} /\left[m\left(\alpha^{2}+\omega_{0}^{2}\right)\right]=$ $F_{0} /\left[m\left(b^{2}+\omega_{0}^{2}\right)\right]$. We therefore find the particular solution to the given differential equation is

$$
\begin{equation*}
x(t)=\frac{F_{0} / m}{\omega_{0}^{2}+b^{2}} e^{-b t} \tag{12}
\end{equation*}
$$

First and Last Name:

\qquad
7. Matrix algebra

We have the following system of two equations of motion

$$
\begin{gathered}
m \ddot{x}_{1}=-k_{L} x_{1}+k_{M}\left(x_{2}-x_{1}\right) \\
m \ddot{x}_{2}=-k_{R} x_{2}-k_{M}\left(x_{2}-x_{1}\right)
\end{gathered}
$$

where x_{1} and x_{2} are position variables and k_{L}, k_{M}, and k_{R} are spring constants. Say we want to write the two equations as a matrix equation where a 2×2 matrix multiplies a 2×1 matrix to yield a 2×1 matrix:

$$
m\binom{\ddot{x}_{1}}{\ddot{x}_{2}}=\left(\begin{array}{ll}
? & ? \\
? & ?
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

What should the values of the question marks be?

Solution: The equations of motion for x_{1} and x_{2} are

$$
\begin{gathered}
m \ddot{x}_{1}=-\left(k_{L}+k_{M}\right) x_{1}+k_{M} x_{2} \\
m \ddot{x}_{2}=-\left(k_{R}+k_{M}\right) x_{2}+k_{M} x_{1},
\end{gathered}
$$

Writing the above equation of motion as a matrix, we have

$$
m\binom{\ddot{x}_{1}}{\ddot{x}_{2}}=\left(\begin{array}{cc}
-k_{K}-k_{M} & k_{M} \\
k_{M} & -k_{R}-k_{M}
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

First and Last Name:
8. Second derivatives

Say we have the function

$$
f(x)=x^{2}+\sin (2 x)
$$

Compute the value of

$$
\lim _{a \rightarrow 0} \frac{f(x+a)-2 f(x)+f(x-a)}{a^{2}}
$$

Solution: The given limit is the definition of a second derivative. Thus for the provided function we have

$$
\begin{equation*}
\lim _{a \rightarrow 0} \frac{f(x+a)-2 f(x)+f(x-a)}{a^{2}}=\frac{d^{2} f}{d x^{2}}=2-4 \sin (2 x) \tag{13}
\end{equation*}
$$

First and Last Name:

\qquad
9. Introduction to Fourier Series

Using the identity

$$
\sin (\alpha) \sin (\beta)=\frac{1}{2}[\cos (\alpha-\beta)-\cos (\alpha+\beta)]
$$

compute the integral

$$
\int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x
$$

where n and m are both integers. Consider two cases: (i) $n=m$ and (ii) $n \neq m$

Solution: Using the given identity, we find

$$
\begin{equation*}
\int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x=\frac{1}{2} \int_{0}^{L}\left[\cos \left(\frac{(n-m) \pi}{L} x\right)-\cos \left(\frac{(n+m) \pi}{L} x\right)\right] d x \tag{14}
\end{equation*}
$$

when $n=m$, we have

$$
\begin{align*}
\int_{0}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x & =\frac{1}{2} \int_{0}^{L}\left[1-\cos \left(\frac{2 m \pi}{L} x\right)\right] d x \\
& =\frac{L}{2}+\left.\frac{L}{2 m \pi} \sin \left(\frac{2 m \pi}{L} x\right)\right|_{0} ^{L}=\frac{L}{2} \tag{15}
\end{align*}
$$

For $n \neq m$, we have

$$
\begin{align*}
\int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x & =\frac{1}{2} \int_{0}^{L}\left[\cos \left(\frac{(n-m) \pi}{L} x\right)-\cos \left(\frac{(n+m) \pi}{L} x\right)\right] d x \\
& =\frac{1}{2}\left[\frac{L}{(n-m) \pi} \sin \left(\frac{(n-m) \pi}{L} x\right)-\frac{L}{(n+m) \pi} \sin \left(\frac{(n+m) \pi}{L} x\right)\right]_{0}^{L} \\
& =0 \tag{16}
\end{align*}
$$

First and Last Name:

\qquad
10. Solutions to Wave Equation

We have the wave equation

$$
\frac{\partial^{2} y(x, t)}{\partial t^{2}}=v^{2} \frac{\partial^{2} y(x, t)}{\partial x^{2}}
$$

where v is a parameter with units of velocity, and x and t are independent position and time variables, respectively. Which of the following functions could be solutions to this wave equation.
(a) $y(x, t)=h(x) g(v t)$
(b) $y(x, t)=g(x-v t)$
(c) $y(x, t)=h(x)+g(v t)$
(d) $y(x, t)=f(x+v t)$

Solution: (a), (b), (c), and (d) are all possible solutions to the wave equation. We can see this by guessing trial solutions.
For (a), $h(x)=A e^{i k x}$ and $g(v t)=B e^{i k v t}$ yield $y(x, t)=C e^{i k(x+v t)}$ (where $C=A B$) which is indeed a valid solution to the wave equation.
For (b), plugging in $g(x-v t)$ into the wave equation yields

$$
\begin{align*}
\frac{\partial^{2}}{\partial t^{2}} y(x, t) & =v^{2} \frac{\partial^{2}}{\partial x^{2}} y(x, t) \\
\frac{\partial^{2}}{\partial t^{2}} g(x-v t) & =v^{2} \frac{\partial^{2}}{\partial x^{2}} g(x-v t) \\
(-v)^{2} g(x-v t) & =v^{2} g(x-v t) \\
g(x-v t) & =g(x-v t) \tag{17}
\end{align*}
$$

Thus $g(x-v t)$ is a solution.
For (c), we find $y(x, t)=h(x)+g(v t)$ is a solution if $h(x)$ and $g(v t)$ satisfy

$$
\begin{align*}
h(x) & =h_{0}+x h_{1}+\frac{1}{2} x^{2} \delta \tag{18}\\
g(v t) & =g_{0}+v t g_{1}+\frac{1}{2} v^{2} t^{2} \delta \tag{19}
\end{align*}
$$

for arbitrary coefficients h_{0}, g_{0}, h_{1}, and g_{1} and a constant δ all of which can be set with initial/boundary conditions.

For (d), we find $y(x, t)=f(x+v t)$ is a solution by a similar calculation to that in (b).

First and Last Name:

\qquad
11. Electromagnetic Waves

The electric field in an electromagnetic wave is given by

$$
E_{y}(z, t)=E_{0} \sin (k z-\omega t)
$$

This electric field is related to the magnetic field, through the Maxwell equation

$$
\frac{\partial B_{x}(z, t)}{\partial z}=\frac{1}{c^{2}} \frac{\partial E_{y}(z, t)}{\partial t}
$$

where c is the speed of light. Assuming constants of integration are irrelevant, what is $B_{x}(z, t)$?

Solution: Differentiating the electric field with respect to time we have

$$
\begin{equation*}
\frac{\partial E_{y}(z, t)}{\partial t}=-\omega E_{0} \cos (k z-\omega t) \tag{20}
\end{equation*}
$$

Integrating, this result (and ignoring the constants of integration) with respect z, gives us

$$
\begin{equation*}
c^{2} B_{x}(z, t)=\int d z \frac{\partial E_{y}(z, t)}{\partial t}=-\omega E_{0} \int d z \cos (k z-\omega t)=-\frac{\omega}{k} E_{0} \sin (k z-\omega t) . \tag{21}
\end{equation*}
$$

Thus

$$
\begin{equation*}
B_{x}(z, t)=-\frac{\omega}{k c^{2}} E_{0} \sin (k z-\omega t)=-\frac{1}{c} E_{0} \sin (k z-\omega t) \tag{22}
\end{equation*}
$$

where we used $k c=\omega$.

First and Last Name:

12. The Predators and the Prey

The following system of differential equations provides a very simple model for the number of rabbits R and the number of foxes F in a population:

$$
\begin{aligned}
\frac{d R}{d t} & =\alpha R(t)-\beta R(t) F(t) \\
\frac{d F}{d t} & =\delta R(t) F(t)-\gamma F(t)
\end{aligned}
$$

where α, β, γ, and δ are constants. At what values of R and F do the number of rabbits and the number of foxes remain constant? (Find all such possible values)

Solution: For the number of rabbits and number of foxes to remain constant, we need $\dot{R}(t)=0$ and $\dot{F}(t)=0$. Thus

$$
\begin{aligned}
& 0=\alpha R(t)-\beta R(t) F(t)=R(t)(\alpha-\beta F(t)) \\
& 0=\delta R(t) F(t)-\gamma F(t)=F(t)(\delta R(t)-\gamma),
\end{aligned}
$$

A trivial, time-independent solution is $R(t)=0$ and $F(t)=0$. The non-trivial solutions yielding constant R and F are

$$
\begin{equation*}
F(t)=\frac{\alpha}{\beta}, \quad R(t)=\frac{\gamma}{\delta} \tag{23}
\end{equation*}
$$

