2. Simple Harmonic Motion

A particle undergoing simple harmonic motion has the position

$$x(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t).$$

This position can also be written as $x(t) = E \cos(\omega_0 t - \phi)$ where E > 0. What are *E* and ϕ in terms of *A* and *B*?

Solution: Using the sum of angles formula we find

$$x(t) = E\cos(\omega_0 t - \phi)$$

= $E\cos\phi\cos(\omega_0 t) + E\sin\phi\sin(\omega_0 t).$ (1)

Equating this result to the given position, we find

$$E\cos\phi\cos(\omega_0 t) + E\sin\phi\sin(\omega_0 t) = A\cos(\omega_0 t) + B\sin(\omega_0 t),$$
(2)

which implies that $E \cos \phi = A$ and $E \sin \phi = B$. Using trigonometric identities and the condition E > 0, we then find

$$E = \sqrt{A^2 + B^2}, \qquad \phi = \tan^{-1} \frac{B}{A}.$$
 (3)

3. Effective spring constant

Two springs with spring constants k_1 and k_2 are connected in parallel as shown in Fig. 1. What is the

Figure 1

effective spring constant k_{eff} ? In other words, if the mass is displaced by x, find the k_{eff} for which the force equals $F = -k_{\text{eff}}x$.

Solution: If the mass is displaced a distance x from its equilibrium position, the spring with spring constant k_1 exerts a restoring force $-k_1x$. Similarly, the spring with spring constant k_2 exerts a restoring force $-k_2x$ on the mass. Thus the net force on the mass is

$$F_{\text{net}} = -k_1 x - k_2 x = -(k_1 + k_2) x.$$
(4)

Therefore the effective spring constant is $k_{\text{eff}} = k_1 + k_2$.

4. Superposition

Let $x_1(t)$ and $x_2(t)$ be solutions to the differential equation

$$\ddot{x}^2(t) = b x(t).$$

where *b* is a constant. Is the linear combination $x(t) = c_1 x_1(t) + c_2 x_2(t)$, where c_1 and c_2 are constants, a solution to the differential equation? (Provide a calculation showing why or why not).

Solution: If x_1 and x_2 solve the differential equation $\ddot{x}^2(t) = b x(t)$, then we have

$$\ddot{x}_1^2(t) = b x_1(t) \qquad \ddot{x}_2^2(t) = b x_2(t).$$
 (5)

For $x(t) = c_1 x_1(t) + c_2 x_2(t)$ to be a solution to the differential equation, it too must satisfy the equations above. Checking whether it does, we have

$$\left[\frac{d^2}{dt^2} \left(c_1 x_1(t) + c_2 x_2(t)\right)\right]^2 \stackrel{?}{=} b \left[c_1 x_1(t) + c_2 x_2(t)\right]$$

$$\left(c_1 \ddot{x}_1 + c_2 \ddot{x}_2\right)^2 \stackrel{?}{=} b c_1 x_1 + b c_2 x_2$$

$$c_1^2 \ddot{x}_1^2 + 2c_1 c_2 \ddot{x}_1 \ddot{x}_2 + c_2^2 \ddot{x}_2^2 \stackrel{?}{=} b c_1 x_1 + b c_2 x_2$$

$$c_1^2 b x_1 + 2c_1 c_2 \ddot{x}_1 \ddot{x}_2 + c_2 x_2 \neq b c_1 x_1 + b c_2 x_2$$
(6)

where in the last line we used Eq.(5). Thus the linear combination $c_1x_1(t) + c_2x_2(t)$ does not satisfy the differential equation and is not a solution to it.

5. An Anti-Hookean oscillator

A particle of mass m and at a position x is subject to a force

$$F(x) = +kx,$$

with k > 0.

- (a) What is the most general form of x(t) in terms of the parameters of the system?
- (b) The particle begins at x_0 and after long times (i.e., $t \to \infty$), the particle is at x = 0. What is the particle's initial velocity?

Solution: The equation of motion of this system is $m\ddot{x} - kx = 0$, or

$$\ddot{x} - \frac{k}{m}x = 0. \tag{7}$$

Finding the general solution by guessing a general exponential and fixing its parameters, we find

$$x(t) = Ae^{t\sqrt{k/m}} + Be^{-t\sqrt{k/m}}.$$
(8)

If the particle begins at x_0 , we have $A + B = x_0$. If the particle is at x = 0 when $t \to \infty$, then we have A = 0. Thus, the specific solution is

$$x(t) = x_0 e^{-t\sqrt{k/m}},\tag{9}$$

and the particle's initial velocity is $v_0 = -x_0\sqrt{k/m}$.

6. Exponential force

A particle of mass *m* is attached to a spring of spring constant *k* and is subject to another external force $F(t) = F_0 e^{-bt}$. The equation of motion of the system is

$$\ddot{x} + \omega_0^2 x = \frac{F_0}{m} e^{-bt},$$
(10)

where $\omega_0^2 = k/m$. Guess a solution of the form $x(t) = Ae^{\alpha t}$ and determine what A and α should be in order for this solution to satisfy the above differential equation.

Solution: Guessing a solution of the form $x(t) = Ae^{\alpha t}$ and plugging it into the equation of motion we find

$$(\alpha^2 + \omega_0^2) A e^{\alpha t} = \frac{F_0}{m} e^{-bt}.$$
 (11)

In order for this equation to be true for all time, we need to take $\alpha = -b$ and $A = F_0/[m(\alpha^2 + \omega_0^2)] = F_0/[m(b^2 + \omega_0^2)]$. We therefore find the particular solution to the given differential equation is

$$x(t) = \frac{F_0/m}{\omega_0^2 + b^2} e^{-bt}.$$
(12)

7. Matrix algebra

We have the following system of two equations of motion

$$\begin{aligned} m\ddot{x}_1 &= -k_L x_1 + k_M (x_2 - x_1) \\ m\ddot{x}_2 &= -k_R x_2 - k_M (x_2 - x_1), \end{aligned}$$

where x_1 and x_2 are position variables and k_L , k_M , and k_R are spring constants. Say we want to write the two equations as a matrix equation where a 2 × 2 matrix multiplies a 2 × 1 matrix to yield a 2 × 1 matrix:

$$m\left(\begin{array}{c} \ddot{x}_1\\ \ddot{x}_2 \end{array}\right) = \left(\begin{array}{c} ? & ?\\ ? & ? \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right)$$

What should the values of the question marks be?

Solution: The equations of motion for x_1 and x_2 are

$$m\ddot{x}_{1} = -(k_{L} + k_{M})x_{1} + k_{M}x_{2}$$

$$m\ddot{x}_{2} = -(k_{R} + k_{M})x_{2} + k_{M}x_{1},$$

Writing the above equation of motion as a matrix, we have

$$m\left(\begin{array}{c} \ddot{x}_1\\ \ddot{x}_2 \end{array}\right) = \left(\begin{array}{cc} -k_K - k_M & k_M\\ k_M & -k_R - k_M \end{array}\right) \left(\begin{array}{c} x_1\\ x_2 \end{array}\right).$$

8. **Second derivatives** Say we have the function

$$f(x) = x^2 + \sin(2x).$$

Compute the value of

$$\lim_{a \to 0} \frac{f(x+a) - 2f(x) + f(x-a)}{a^2}.$$

Solution: The given limit is the definition of a second derivative. Thus for the provided function we have $f(x_1, x_2) = 2f(x_1) + f(x_2) + f(x_3) + \frac{1}{2}f(x_3)$

$$\lim_{a \to 0} \frac{f(x+a) - 2f(x) + f(x-a)}{a^2} = \frac{d^2f}{dx^2} = 2 - 4\sin(2x).$$
(13)

9. **Introduction to Fourier Series** Using the identity

$$\sin(\alpha)\sin(\beta) = \frac{1}{2}\left[\cos(\alpha - \beta) - \cos(\alpha + \beta)\right],$$

compute the integral

$$\int_0^L \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) \, dx$$

where n and m are both integers. Consider two cases: (i) n = m and (ii) $n \neq m$

Solution: Using the given identity, we find

$$\int_0^L \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) \, dx = \frac{1}{2} \int_0^L \left[\cos\left(\frac{(n-m)\pi}{L}x\right) - \cos\left(\frac{(n+m)\pi}{L}x\right)\right] \, dx \tag{14}$$

when n = m, we have

$$\int_{0}^{L} \sin\left(\frac{m\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) dx = \frac{1}{2} \int_{0}^{L} \left[1 - \cos\left(\frac{2m\pi}{L}x\right)\right] dx$$
$$= \frac{L}{2} + \frac{L}{2m\pi} \sin\left(\frac{2m\pi}{L}x\right) \Big|_{0}^{L} = \frac{L}{2}.$$
(15)

For $n \neq m$, we have

$$\int_0^L \sin\left(\frac{n\pi}{L}x\right) \sin\left(\frac{m\pi}{L}x\right) \, dx = \frac{1}{2} \int_0^L \left[\cos\left(\frac{(n-m)\pi}{L}x\right) - \cos\left(\frac{(n+m)\pi}{L}x\right)\right] \, dx$$
$$= \frac{1}{2} \left[\frac{L}{(n-m)\pi} \sin\left(\frac{(n-m)\pi}{L}x\right) - \frac{L}{(n+m)\pi} \sin\left(\frac{(n+m)\pi}{L}x\right)\right]_0^L$$
$$= 0. \tag{16}$$

10. **Solutions to Wave Equation** We have the wave equation

$$rac{\partial^2 y(x,t)}{\partial t^2} = v^2 rac{\partial^2 y(x,t)}{\partial x^2},$$

where *v* is a parameter with units of velocity, and *x* and *t* are independent position and time variables, respectively. Which of the following functions could be solutions to this wave equation.

(a) y(x,t) = h(x)g(vt)

(b)
$$y(x,t) = g(x - vt)$$

- (c) y(x,t) = h(x) + g(vt)
- (d) y(x,t) = f(x+vt)

Solution: (a), (b), (c), and (d) are all possible solutions to the wave equation. We can see this by guessing trial solutions.

For (a), $h(x) = Ae^{ikx}$ and $g(vt) = Be^{ikvt}$ yield $y(x,t) = Ce^{ik(x+vt)}$ (where C = AB) which is indeed a valid solution to the wave equation.

For (b), plugging in g(x - vt) into the wave equation yields

$$\frac{\partial^2}{\partial t^2} y(x,t) = v^2 \frac{\partial^2}{\partial x^2} y(x,t)$$
$$\frac{\partial^2}{\partial t^2} g(x-vt) = v^2 \frac{\partial^2}{\partial x^2} g(x-vt)$$
$$(-v)^2 g(x-vt) = v^2 g(x-vt)$$
$$g(x-vt) = g(x-vt).$$
(17)

Thus g(x - vt) is a solution.

For (c), we find y(x,t) = h(x) + g(vt) is a solution if h(x) and g(vt) satisfy

$$h(x) = h_0 + xh_1 + \frac{1}{2}x^2\delta$$
(18)

$$g(vt) = g_0 + vtg_1 + \frac{1}{2}v^2t^2\delta,$$
(19)

for arbitrary coefficients h_0 , g_0 , h_1 , and g_1 and a constant δ all of which can be set with initial/boundary conditions.

For (d), we find y(x,t) = f(x + vt) is a solution by a similar calculation to that in (b).

11. Electromagnetic Waves

The electric field in an electromagnetic wave is given by

$$E_y(z,t) = E_0 \sin(kz - \omega t).$$

This electric field is related to the magnetic field, through the Maxwell equation

$$\frac{\partial B_x(z,t)}{\partial z} = \frac{1}{c^2} \frac{\partial E_y(z,t)}{\partial t},$$

where *c* is the speed of light. Assuming constants of integration are irrelevant, what is $B_x(z,t)$?

Solution: Differentiating the electric field with respect to time we have

$$\frac{\partial E_y(z,t)}{\partial t} = -\omega E_0 \cos(kz - \omega t).$$
⁽²⁰⁾

Integrating, this result (and ignoring the constants of integration) with respect z, gives us

$$c^{2}B_{x}(z,t) = \int dz \,\frac{\partial E_{y}(z,t)}{\partial t} = -\omega E_{0} \int dz \,\cos(kz - \omega t) = -\frac{\omega}{k} E_{0} \sin(kz - \omega t). \tag{21}$$

Thus

$$B_x(z,t) = -\frac{\omega}{kc^2} E_0 \sin(kz - \omega t) = -\frac{1}{c} E_0 \sin(kz - \omega t),$$
(22)

where we used $kc = \omega$.

12. The Predators and the Prey

The following system of differential equations provides a very simple model for the number of rabbits R and the number of foxes F in a population:

$$\frac{dR}{dt} = \alpha R(t) - \beta R(t)F(t)$$
$$\frac{dF}{dt} = \delta R(t)F(t) - \gamma F(t),$$

where α , β , γ , and δ are constants. At what values of R and F do the number of rabbits and the number of foxes remain constant? (Find all such possible values)

Solution: For the number of rabbits and number of foxes to remain constant, we need $\dot{R}(t) = 0$ and $\dot{F}(t) = 0$. Thus

$$\begin{split} 0 &= \alpha R(t) - \beta R(t) F(t) = R(t) (\alpha - \beta F(t)) \\ 0 &= \delta R(t) F(t) - \gamma F(t) = F(t) (\delta R(t) - \gamma), . \end{split}$$

A trivial, time-independent solution is R(t) = 0 and F(t) = 0. The non-trivial solutions yielding constant *R* and *F* are

$$F(t) = \frac{\alpha}{\beta}, \qquad R(t) = \frac{\gamma}{\delta}.$$
 (23)