
Massachusetts Institute of Technology MITES 2018–Physics III

Lecture 02: Calculus, Probability, and Combinatorics

In these notes, we review the mathematics of change, chance, and counting.

1 Change, Chance, and Counting
Like all areas of physics, statistical physics makes use of calculus, the mathematics of change. Through
calculus, we can define functions and compute the way these functions vary their independent variables. But
the ”statistical” in the statistical physics’ name suggests we will need additional mathematical tools beyond
the ones developed in an introductory physics course. These tools can in general be framed our ability to
answer certain questions concerning chance, and counting. The mathematics of chance is more formally
known as probability theory, and the mathematics of counting is more formally termed combinatorics).
Probability theory provides ways to define and compute the properties (e.g., averages, standard deviations)
of random events. Combinatorics provides systematic ways for counting elements in a set. With the tools
from calculus, chance, and counting we should be able to answer questions like

1. How do we determine the local maxima of f(x) = x3/3− x?

2. The probability density for a random variable t is p(x) = e−t/τ/τ . What is the variance of t?

3. How many ways can we fill 3 different electoral positions when we have 9 people?

The physical relevance of these questions may be unclear right now, but each one is related to techniques
we will need when we study statistical physics. So our framing question for these notes is

Framing Question
What are the basic mathematics governing change, chance, and counting?

2 Calculus: Mathematics of change
A function in a single real variable is a quantity that takes in a real number (i.e., a number that has no
factors of the imaginary number i =

√
−1) and outputs another number, such that each input has only a

single output. Common examples of functions are

f(x) = ex, f(x) = x3 + x2 + x+ 1, and f(x) = sin(x). (1)

Less common examples, (both of which we will see in this course) are

f(x) = Γ(x+ 1), and f(x) = tanh(x). (2)

2.1 Differentiation
When we have a function, we are often also interested in the rate of change of the function with respect to
its independent variable. If we wanted to know the average rate of change in f(x) as x varied from x = x0
to x = x1, we would compute

f(x1)− f(x0)

x1 − x0
. [Average rate of change from x = x0 to x = x1.] (3)
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2 CALCULUS: MATHEMATICS OF CHANGE M. WILLIAMS

However, more often we are not merely interested in an average rate of change over an interval, but in a rate
of change at a specific point. In such a scenario, we have to compute the derivative of the function at the point
of interest. The derivative of f(x) at the point x = x0 is defined as

lim
h→0

f(x0 + h)− f(x)

h
, [Instantaneous rate of change at x = x0.] (4)

where h is a real number and limh→0 means we take the value of the associated expression as h approaches
0. The quantity in Eq.(4) is variously denoted as f ′(x0), df/dx|x=x0

, and df(x0)/dx. Some common examples
of derivatives are

d

dx
ex = ex

d

dx
sin(x) = cos(x) ,

d

dx
xn = nxn−1. (5)

We can schematically represent derivatives of functions as the action of the derivative operator on the orig-
inal function:

Figure 1: The action of a derivative takes a function and outputs a new function.

Derivatives will be important in our subsequent development of statistical physics, not only because they
encode information on instantaneous rates of change, but also because they allow us to determine at what
values in its domain a function has local minima or local maxima. Say we had the function

f(x) =
x3

3
− x. (6)

Plotting the function, we obtain the graph shown in Fig. 2. If we wanted to determine, at what values of x
the function assumes the points denoted ”top of hill” and ”bottom of valley” we could use calculus to do
so. Using their formal names, the ”top of the hill” is a local maximum of the function and the ”bottom of
the valley” is a local minimum of the function. The local maximum of a function is the point where the
value of the function is larger than any other values in some arbitrarily small vicinity of that point. The local
minimum is similarly defined.

From the properties of derivatives, we recognize that at both the top of the hill and the bottom of the
valley, the rate of change of the function is zero:

f ′(x) = 0 at both local minima and local maxima (7)

However, as we move from the left to the right of the local maximum, the derivative of f(x) changes from
positive to negative. Thus while the rate of change of f(x) is zero at the local maximum, the rate of change of this
rate of change is negative at the local maximum, that is, at the local minimum the rate of change is decreasing.
Similarly, the rate of change in moving from the left of the local minimum to the right of the local minimum
goes from negative to positive, that is, at the local maximum the rate of change is increasing. Thus, the
properties of the first derivative and the second derivative at an optimal value of a function determines
what kind of optimal value it is:

• A function has a local minimum at a point x0, if f ′(x0) = 0 and f ′′(x0) > 0.

• A function has a local maximum at a point x0, if f ′(x0) = 0 and f ′′(x0) < 0.

2



2 CALCULUS: MATHEMATICS OF CHANGE M. WILLIAMS

Figure 2: The function f(x) = x3/3 − x has a local minimum and a local maximum. We can compute the
location of the former by finding the value of xwhere f ′(x) = 0 and f ′′(x) > 0. We can compute the location
of the latter by finding the value of x where f ′(x) = 0 and f ′′(x) < 0.

2.2 Integration
Another question we may ask about differentiation is whether it has an inverse operation. Is there an oper-
ation that, when given the derivative of a function, returns the function itself? In a calculus course, we find
that the answer is indeed yes. The operation that is the inverse of the derivative is called the anti-derivative
or indefinite integral of a function, and it is denoted symbolically as

∫
dx. For example, when acting on the

derivative f ′(x), this operation yields ∫
dx f ′(x) = f(x) + C, (8)

where C is a constant which must be added to f(x) to represent the most general form of a function which
yields f ′(x) when differentiated. Depicted schematically, Eq.(14) is

Figure 3: The action of an indefinite integral takes a function and outputs a new
function. It is the inverse operation of the derivative in Fig. 1.

The relationship between derivatives and indefinite integrals that is shown in Eq.(14) can also be expressed
in terms of definite integrals. A definite integral represents the area between a function and the x-axis from
an initial point on that axis to a final point. Expressing Eq.(14) as a definite integral leads to the fundamental
theorem of calculus. The simplest form of the theorem states that for functions f(x) that are continuous
and differentiable over their entire domain, we have∫ b

a

dx f ′(x) = f(b)− f(a). (9)

Conceptually, the theorem states that the summation of the rate of change of a function from one point to
another point is equal to the difference between the values of the function at those two points. For example,
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2 CALCULUS: MATHEMATICS OF CHANGE M. WILLIAMS

we can evaluate the integral of sin2(x) from 0 to 2π using Eq.(15):∫ 2π

0

dx sin2 x =

∫ 2π

0

dx
1

2
(1− cos 2x)

=

[
x

2
− 1

4
sin(2x)

]2π
0

=
2π

2
− 1

4
sin(4π)− 0

2
+

1

4
sin(0) = π. (10)

Unlike differentiation, which can be performed algorithmically, it is not possible to calculate the integral of
every function we encounter. However, there are two standard techniques for computing integrals which
will be useful throughout this course:

• u-substitution: Because the derivative of a composite function f(g(x)) is f ′(g(x))g′(x) the anti-derivative
of f ′(g(x))g′(x) is f(g(x)). Thus, by Eq.(15), we have∫ b

a

dx g′(x)f ′ (g(x)) = f (g(b))− f (g(a)) . (11)

We can write this equation in a simpler form by defining u = g(x) and substituting this definition into
the integral. Noting that du/dx = g′(x) and thus that dx g′(x) = du, we have∫ ub

ua

du f ′ (u) = f(ub)− f(ua), (12)

where ub = g(b) and ua = g(a). This is the essence of the u-substitution technique: Finding a factor in
the integral which is the derivative of the argument of a composite function. This technique is useful
in evaluating the integrals of functions like xe−x2 and cos(x) ln (sin(x)).

• Integration by parts: By the product rule of derivatives, we know that

d

dx
(fg) =

df

dx
g + f

dg

dx
, (13)

for functions f(x) and g(x). We can integrate both sides of Eq.(19) and use Eq.(15), to find

fg
]x=b
x=a

=

∫ b

a

dx
df

dx
g +

∫ b

a

dx f
dg

dx
, (14)

or ∫ b

a

dx
df

dx
g = fg

]x=b
x=a
−
∫ b

a

dx f
dg

dx
. (15)

We thus are able to evaluate the integral of a product of two functions by ”reducing” the number of
derivatives applied to one function and ”increasing” the number of derivatives applied to the other.
This technique aids in the evaluation of integrals of functions like x4e−x and ex sin(x).

2.3 Taylor Series
The final topic of calculus that we will review provides a way to express special functions like ln(1 + x) and
tanx as sums of functions like x, x2, and so on. We begin with the fundamental theorem of calculus:∫ x

x0

dx1 f
′(x1) = f(x)− f(x0), (16)
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2 CALCULUS: MATHEMATICS OF CHANGE M. WILLIAMS

or, rearranging the equation a bit,

f(x) = f(x0) +

∫ x

x0

dx1 f
′(x1), (17)

where x1 is an integration variable whose exact label is not important1. Eq.(23) expresses the function f(x)
as an integral of its derivative offset by a constant. This equation is valid for any function f(x) that has a
well-defined derivative over its entire domain. Let’s suppose this is true for our f(x). We can, for example,
express f ′(x1) itself as an integral. Doing so, we have

f ′(x1) = f ′(x0) +

∫ x1

x0

dx2 f
′′(x2), (18)

where f ′′(x) is both the second derivative of f(x) and the first derivative of f ′(x), and x2 is a new integration
variable. Inserting Eq.(24) into Eq.(23) yields

f(x) = f(x0) +

∫ x

x0

dx1

[
f ′(x0) +

∫ x1

x0

dx2 f
′′(x2)

]
= f(x0) +

∫ x

x0

dx1 f
′(x0) +

∫ x

x0

dx1

∫ x1

x0

dx2 f
′′(x2)

= f(x0) + (x− x0)f ′(x0) +

∫ x

x0

dx1

∫ x1

x0

dx2 f
′′(x2), (19)

where in the final line we used the fact that f ′(x0) is independent of x to simplify the integration. We can
repeat this procedure for f ′′(x2). We replace f(x) in Eq.(23) with f ′′(x2) to obtain

f ′′(x2) = f ′′(x0) +

∫ x2

x0

dx3 f
′′′(x3). (20)

Inserting this expression into Eq.(25) and using∫ x

x0

dx1

∫ x1

x0

dx2 =

∫ x

x0

dx1 (x1 − x0) =
1

2
(x− x0)2, (21)

we have

f(x) = f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f ′′(x0) +

∫ x

x0

dx1

∫ x1

x0

dx2

∫ x2

x0

dx3 f
′′′(x3). (22)

You may already recognize the pattern. If we were to continue this procedure indefinitely we would obtain

f(x) = f(x0) + (x− x0)f ′(x0) +
1

2
(x− x0)2f ′′(x0) +

1

3!
(x− x0)3f ′′′(x0) +

1

4!
(x− x0)4f (4)(x0) + · · · , (23)

where f (k) is the kth derivative of f . We can write Eq.(29) more succinctly using sum notation:

f(x) =

∞∑
k=0

(x− x0)k

k!
f (k)(x0) (24)

Eq.(30) is called the Taylor series of the function f(x) expanded about the point x = x0. The Taylor series
allows us to express a function as a summation (with appropriate coefficients) of powers of x. What the
above derivation obscures is the fact that this sum does not always result in a finite quantity. For this class,
we sidestep this issue, because we would have to use more theoretical tools from calculus to establish the

1We could, for example, replace x1 with u, y, or ”smiley face” and we would get the same result.
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3 PROBABILITY M. WILLIAMS

conditions under which Eq.(30) is finite. For our purposes, we will only apply Eq.(30) to functions whose
domain of validity in x is well known.

Often we are interested in Taylor series about the point x = 0, in which case the expression Eq.(30)
simplifies. Below we list a few such Taylor series for common functions in mathematics. On each line we
also include the domain of x in which these Taylor Series are valid.

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xk

k!
+ · · · valid for all x (25)

sin(x) = x− x3

3!
+
x5

5!
+ · · ·+ (−1)k

x2k+1

(2k + 1)!
+ · · · valid for all x (26)

ln(1 + x) = x− x2

2
− x3

3
+ · · ·+ (−1)k−1

xk

k
+ · · · valid for |x| < 1 (27)

(1 + x)n = 1 + nx+

(
n

2

)
x2 +

(
n

3

)
x3 + · · ·+

(
n

k

)
xk + · · ·

{
n is an integer valid for all x
otherwise valid for |x| < 1

(28)

It is worth noting that Eq.(34) is both the Taylor Series and binomial expansion of (1 + x)n.

3 Probability
3.1 Discrete random variables
In our later development of statistical physics, we will constantly deal with the mathematics of chance
through questions concerning probability and averages. In order to build up the mathematics relevant to
these questions, it will prove simplest to begin with an example.

Say we had a fair six-sided die. Rolling the die and allowing it to settle on a side would yield an upturned
face with dots numbering either one, two , three, four, five, or six. Because the outcome of the roll is random,
we call this outcome a random variable. More formally, a random variable is a quantity that results from
performing a random experiment. For this system of a single die, we label our general random variable as
j where j can be any element of the set {1, 2, 3, 4, 5, 6}.

Because j takes on integer values (and is, more generally, countable), the system of the rolled die is said
to concern a discrete random variable. The possible values of our random variable are called events such
that when we roll the die, we observe one of the possible events. Because we have a fair die, the probability
of each of the possible events is the same. Labeling pj as the probability of observing j dots upon a roll of
the die (i.e., the probability of observing event j), we have

pj = 1/6 for j an element of {1, 2, 3, 4, 5, 6}. (29)

We could have inferred the result Eq.(35) intuitively, but more rigorously it came from noting that the the
probability to observe any event must be 1. That is the sum of the probabilities of all the possible values of
j must be 1:

N∑
j=1

pj = 1, (30)

whereN = 6. Given that pj is the same for all j, we then obtain 6p1 = 1 or p1 = 1/6, which is the probability
of obtaining any particular value of j.

We can ask another question: What is the average value of a roll for this die? Namely if we were to roll
the die (say) 120 times, to then sum all of the obtained values on the upturned side, and to finally divide
by 120, what would we expect to get2? Because the probability of each event is 1/6, we would expect to get

2This calculation is mostly correct, but when we actually implement multiple trials of a random experiment, the value we actually
obtain is rarely the exact theoretical value. Instead, the experimental value has some probability (which is not equal to 1) of being in

6



3 PROBABILITY M. WILLIAMS

1/6× 120 = 20 repeats of each side of the die. In this case, the average value would be

Average of j =
1× 20 + 2× 20 + 3× 20 + 4× 20 + 5× 20 + 6× 20

120

=
1

6
× 1 +

1

6
× 2 +

1

6
× 3 +

1

6
× 4 +

1

6
× 5 +

1

6
× 6

=
15

6
, (31)

From the second line of Eq.(37), we see that the average value of j is the sum of the j for all events weighted
by the probability of the event. Denoting this average (also called the mean) as 〈j〉, we can write this result
as

〈j〉 ≡
N∑
j=1

j pj . (32)

The utility of the above expression for the average of j is that it is easy to generalize. If the average of j is
the probability weighted sum of j over all possible values of j, then we can infer that the average of any f(j)
(i.e., function of j) is the probability weighted sum of f(j) over the possible values of j. Using our standard
notation, the average of a quantity f(j) is then

〈f(j)〉 ≡
N∑
j=1

f(j) pj . (33)

The ”average” operation Eq.(39) has some properties which will be useful later on. For constants c1 and c2
and functions f1(j) and f2(j), we can use Eq.(39) to show

〈c1f1(j) + c2f2(j)〉 = c1〈f1(j)〉+ c2〈f2(j)〉, (34)

namely the sum of an average is the average of the sum, and constant coefficients can be factored from our
averages.

The most important application of Eq.(39) is to the calculation of 〈j〉, the mean of our random variable.
As we discussed, the mean represents the value we would expect to obtain if we ran our probability trials
(rolling the die in this case), multiple times, summed up all the values for the trials, and divided by the
number of trials. The second most important application of Eq.(39) is to the calculation of how spread out
the possible values of j are in our distribution. This quantity is termed the variance of j and is defined as

σ2
j ≡

〈
(j − 〈j〉)2

〉
. (35)

The variance of a random variable is the average of the square of the difference between the value of the
random variable and the mean of the random variable. We can find a simpler form for this quantity by
using our previous definition of 〈f(j)〉. We have

σ2
j =

∑
j

(j − 〈j〉)2 pj

=
∑
j

(
j2 − 2j〈j〉+ 〈j〉2

)
pj

=
∑
j

j2pj −
∑
j

2j〈j〉pj +
∑
j

〈j〉2pj

some finite range around the theoretical average.
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3 PROBABILITY M. WILLIAMS

= 〈j2〉 − 2〈j〉
∑
j

jpj + 〈j〉2
∑
j

pj

= 〈j2〉 − 2〈j〉2 + 〈j〉2, (36)

or simply
σ2
j = 〈j2〉 − 〈j〉2. (37)

For the case of our die, we can show that the variance of j has the value

σ2
j =

107

12
' 8.9. (38)

Because the variance is defined in terms of the square of j − 〈j〉, it does not precisely represent how spread
out the distribution of values is about the mean. Rather, to get a spread with the correct dimensions, we
need to take the square root of the variance. Doing so gives us the standard deviation. For the die, the
standard deviation is

σj ' 2.98. (39)

Roughly, the standard deviation provides a scale for how wide our probability distribution is. In an ex-
periment with multiple trials, this standard deviation also sets the scale for how much our experimentally
observed mean deviates from the theoretically calculated mean a result which has larger relevance in what is
known as the central limit theorem, but exploring this fact will require some additional work in probability
theory.

3.2 Continuous random variables
Now, that we have reviewed the basics of probability theory with discrete random variables, we can consider
continuous random variables. We will take an example from microbiology.

E. coli is a species of bacteria that lives in the human intestine. E. coli reproduces by splitting itself into
two identical copies. The time t at which this splitting occurs is random and thus constitutes a random
variable for a probabilistic process. Because time is continuous, so too is our random variable t and thus the
discrete summations considered above do not apply.

Instead, what we need is a way to define probabilities for continuous random variables. Because a con-
tinuous domain has an infinite number of values within any finite interval, we cannot simply define a prob-
ability to be at any one value, for any such probability would be zero. For example, if we have p = 1/N for
N possible values of the random variable then p → 0 as N → ∞. What we require is a new mathematical
quantity called a probability density function. For our example of dividing E. coli, our probability density
is a function of t and can be denoted p(t). It is defined as follows:

Probability density p(t) (defined): If p(t) is the probability density for the division time t of E.
coli, then, for ∆t sufficiently small, the probability that E. coli divides at a time between t and
t+ ∆ is

p(t)∆t. (40)

The units of p(t) are 1/time and hence it does not represent an absolute probability, but rather (as its
name suggests) a density. To find an absolute probability, we have to relax the natural desire to find the
probability of any single event (because single event probabilities are zero for continuous distributions) and
satisfy ourselves with finding the probability to be in a space of values. This requires us to define a quantity
called the cumulative probability density. Given that division times for E. coli must be greater than or equal
to zero, we can define the cumulative probability that a division has occurred by time t as

P (t′ < t) =

∫ t

0

dt′ p(t′). (41)

8
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4 COMBINATORICS M. WILLIAMS

By the fundamental theorem of calculus, Eq.(47) tells us that the derivative of the cumulative probability is
equal to the probability density:

d

dt
P (t′ < t) = p(t). (42)

Moreover, because the E. coli cell must divide at some point, we know that as time goes to infinity, the
probability of division must be 1. That is P (t′ < ∞) = 1. With Eq.(47), we then have the normalization
requirement

1 =

∫ ∞
0

dt′ p(t′). (43)

Eq.(49) is the continuous analog of Eq.(36). Similarly, analogous to Eq.(39) we can compute the average of
any function of t as the probability-weighted integration of said function over all possible values of t:

〈f(t)〉 =

∫ ∞
0

dt′ f(t′)p(t′). (44)

For example, the mean division time 〈t〉 can be computed from

〈t〉 =

∫ ∞
0

dt′ t′ p(t′). (45)

Let us practice evaluating these averages using a concrete expression for the probability distribution of
E. coli’s time of division. The distribution of division times for E.coli is known to have an exponential
distribution:

p(t) =
1

τ
e−t/τ , (46)

where τ = 30 min3.
Computing Eq.(51), using the identity in Eq.(52), we find

〈t〉 =

∫ ∞
0

dt
t

τ
e−t/τ = τ

∫ ∞
0

dxxe−x = τ, (47)

where we used a change of variables in the first equality and integration by parts in the final equality. Thus,
by this probability model, the mean division time of E. coli is τ = 30 min. Let us compute the standard
deviation. The formula Eq.(43) still applies in the case of continuous probability distributions. Applying it
we have

σ2
t = 〈t2〉 − 〈t〉2

=

∫ ∞
0

dt
t2

τ
e−t/τ − τ2

= 2τ2 − τ2 = τ2. (48)

Therefore the standard deviation is τ = 30 min, the same as the mean. Thus τ sets both the scale for the
average division time of the bacterium and the width of the distribution of division times.

4 Combinatorics
In addition to being able to compute probabilities, we will need to know how to count. You might feel
you are already quite adept at counting, but the type of counting we will need to do is of a rather more
specialized kind. For example, we will be interested in determining the number of ways to arrange two

3Bacteria actually have a distribution of division times [1]. We choose a single value for the purposes of this example.
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identical particles amongst N possible spaces for those particles, or in the ways to create pairings between
multiple elements such that no pairing is from some special set of elements. In general, the problems of
counting we will consider will concern a set of elements and determining the number of ways to construct
groups of these elements according to some given constraint. The mathematics of how to perform this kind
of counting is called combinatorics.

For our later work we will only need two definitions from this rather large field: permutations and
combinations.

Say we have the three letters A, B, and C. A permutation of these letters is a particular ordering of
them. (A,B,C) is one permutation and (C,A,B) is another. Given this definition, an obvious question is
exactly how many permutations are there for a given collection of letters, or, more generally, elements. We
can answer this question by counting the possibilities for each placement of a letter. We have three letters,
so there are 3 possible choices for the entry in the first place. After we make this choice, there are 2 possible
choices for the second place, and then 1 possible choice for the last place. Therefore, there are 3× 2× 1 = 6
possible permutations of A,B,C.

This solution can be easily generalized to answer the question ”How many permutations do we have
of N distinct elements A1, A2, . . . , AN . By similar reasoning to that above, we find that the number of
permutations of this N -distinct-elements set is

N × (N − 1)× · · · × 2× 1. (49)

This quantity is so important that it is given its own symbol in mathematics: We denote it N !, and it is
termed ”N factorial”.

Exercise: Permutations with repeated elements
Now, Eq.(55) only counts the number of ways to order N elements of a list when each element is
unique. If an element appears multiple times in the list, we would need to divide Eq.(55), by the
number of equivalent ways to reorder this collection of repeated elements. For example, if instead of
A, B, and C in the above example, we had A, A, and C, then there are still 3 elements and 3! ways
to order them, but because A appears twice, we can rearrange the As in 2! ways for each ordering
without changing the actual permutation. So to find the true number of permutations of AAC we
divide 3! by 2! to get 3. Similarly, if we had AAA, then we would find that there are 3!/3! = 1
permutation. In general, if we have a list of N elements where element 1 occurs n1 times, element 2
occurs n2 times, and so on up until elementM occurring nM times, then the number of permutations
of this list is

N !

n1!× n2!× · · · × nM !
, where n1 + n2 + · · ·+ nM = N. (50)

From here we can ask a related question: what if we had N distinct elements and we wanted to form a
list of r ≤ N elements. How many such lists could we create? We can answer this question by repeating
the element-by-element multiplication procedure used above, but instead of going all the way to the last
element, we stop after we have considered r elements Thus the number of ways to create ordered lists of r
elements when we have N unique elements is

N × (N − 1)× · · · × (N − (r − 1)) =
N !

(N − r)!
. (51)

4.1 Combinations
Now, that we have discussed permutations, we are now prepared to tackle combinations. We can think of
a combination as a permutation where order does not matter. For example, while there are 3! = 6 permu-
tations of the letters A, B, and C, there is only one three-letter ”combination” of these letters. At the level of
combinations, the orderings (A,B,C), (C,A,B), and so on are equivalent because they are all composed of

10
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the same three letters. Because of a combination’s indifference to order, we can modify our previous results
on permutations to obtain analogous results to similarly phrased questions on combinations.

Say we wanted to know the number of ways we could create three-letter combinations of the letters A,
B, C, D, and E. We know from Eq.(57) that the number of ways to create a three-letter ordered list from five
letters is 5!/(5− 3)!. But in moving from an ordered list to a combination, order is not important and so the
3! ways of ordering these three-letter lists are all equivalent. Thus, to account for the irrelevance of order we
need to divide the permutation result Eq.(57) by the number of ways to re-order the chosen elements. For
our example, this leaves us with 5!/3!(5− 3)!. More generally, the number of ways to select r elements from
a list of N different elements is

N !

r!(N − r)!
. (52)

Eq.(59) is also important enough to have its own notation. We denote it as NCr or
(
N
r

)
and call it ”N choose

r”.
Permutations and combinations form the foundation for many questions in the mathematics of counting

but they also feature heavily in probability theory. As an example, consider the binomial theorem. Ex-
pressed in terms of the notation for ”N choose r”, we have

(x+ y)N =

N∑
r=0

(
N

r

)
xryN−r. (53)

We can use Eq.(60) to determine the probability of getting r events of one kind when we performN trials of
an experiment with only two possible values. Let us say we had an unfair coin where there was a probability
3/4 of getting heads and a probability 1/4 of getting tails. Here is the question:

Question: If we flipped the coin 10 times, what is the probability of getting 5 heads in any order?

Because our random variable (the side the coin lands on) can take only one of two values, if we get 5 heads,
we must also get 10− 5 = 5 tails. The probability of getting 5 heads and 5 tails in one particular ordering of
heads and tails is

Prob. of 5 heads for a particular order of results =

(
3

4

)5(
1

4

)5

. (54)

However, in answering the main question, we do not care about the order in which these results occur. Get-
ting the event consisting of 5 heads in a row and then 5 tails in a row is unlikely, but it should be included in
our probability. Similarly, the event of getting heads and tails in alternating fashion should also be included
in our probability. Thus, the probability of getting 5 heads and 5 tails in any order is Eq.(61) multiplied
by the number of ways to choose 5 events for a heads outcome out of a sequence of 10 events. This latter
quantity is simply

(
10
5

)
, and so we have

Prob. of 5 heads in any order =

(
10

5

)(
3

4

)5(
1

4

)5

. (55)

More generally, Eq.(62) arises from the set of distributions called binomial distributions. Taking x = p to
be the probability of getting heads and y = 1 − p to be the probability of getting tails, we can write Eq.(60)
as

1 =

N∑
k=0

(
N

k

)
pk(1− p)N−k ≡

N∑
k=0

PN (k; p), (56)

where
PN (k; p) =

(
N

k

)
pk(1− p)N−k, (57)

11
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is the probability of getting k heads from N coin throws when the probability of a single heads is p. For the
particular values of N , k, and p pertinent to our question we have

P10(5; 3/4) =

(
10

5

)(
3

4

)5(
1

4

)5

, (58)

which reproduces Eq.(62).
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