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Lecture 03: Entropy from Information

In these notes, we will use a simple number guessing game to develop intuition behind the definition of
entropy in physics. The number guessing game here is similar to the question guessing game in Chapter 2
of [1].

1 The definition of entropy
In the early 19th century, scientists and engineers1 sought to understand the properties of steam and heat
engines using the recently developed theories of how gas volumes, temperatures, and pressures are in-
terrelated. Ultimately, these engineers found that heat always flowed from higher temperatures to lower
temperatures, and, without the input of external work, the reverse was not possible (Fig. 1).

Figure 1: An isolated system experiencing heat exchange. T1 and T2 are the temperatures of the left and right
system, and ∆Q1 and ∆Q2 are the heats added to the left and right systems. Scientists of the 19th century
observed that when T1 > T2, then ∆Q1 < 0 and ∆Q2 > 0 and vice versa for T1 < T2. Clausius explained
this result by defining a new concept called entropy and introducing the second law of thermodynamics.

In 1865 Rudolf Clausius, in an attempt to model what was happening in these systems, introduced a new
quantity and a new law to explain what fundamentally was being transferred from one temperature to the
next. He first stated that any transfer of heat ∆Q to or away from a system (where the sign of ∆Q defines
the direction of transfer) is associated with an increase in entropy of

∆S =
∆Q

T
[Clausius definition of entropy], (1)

where T is the temperature at which this transfer occurs2 . He then asserted what has become known as the
second law of thermodynamics:

The entropy of an isolated system (that is, a system which exchanges neither matter nor energy
with its surroundings) either increases or stays the same. The entropy of such an isolated system
never decreases.

The explanation for why heat flowed from higher temperatures to lower temperatures was as follows.
Given the heat changes shown in Fig. 1 and Eq.(1), the total entropy change of the system in Fig. 1 is

∆Stot = ∆S1 + ∆S2 =
∆Q1

T1
+

∆Q2

T2
. (2)

1In particular the engineer Sadi Carnot.
2More accurately, Eq.(1) applies primarily to reversible processes, that is processes in which the time-reversed version is still physi-

cally feasible. The spontaneous expansion of a small amount of gas into an open room is not reversible, but the expansion of a gas in a
closed container resulting in an increase in the height of a piston is.
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For an isolated system, no heat enters or leaves the system. That is, the total heat change of the system is
zero: ∆Q1 + ∆Q2 = 0. We can thus define ∆Q1 = ∆Q and ∆Q2 = −∆Q for some ∆Q. From this fact and
Eq.(2), we then have

∆Stot =

(
1

T1
− 1

T2

)
∆Q. (3)

By the second law of thermodynamics, ∆Stot must be greater than or equal to zero. From relative values of
T1 and T2 we can then determine the sign of ∆Q

– If T1 > T2, then ∆Q must be negative. Thus, ∆Q1 < 0 and ∆Q2 > 0 meaning heat flows from 1 to 2.

– If T1 < T2, then ∆Q must be positive. Thus, ∆Q1 > 0 and ∆Q2 < 0 meaning heat flows from 2 to 1.

In either case, heat flows from the higher temperature to the lower temperature. Eq.(1) together with the
second law of thermodynamics well modeled why heat flows from high temperatures to low temperatures,
but there still remained the question of what entropy was at the level of particle properties. In particular,
Eq.(1) defines changes in entropy, but it does not define entropy absolutely.

A definition of entropy grounded in particle properties came a few years later with the work of Ludwig
Boltzmann and Josiah Gibbs3.

In 1877, Boltzmann stated that the entropy of a system was a function of the number of configurations,
and the probability to be in any particular configuration was a function of the energy of the configuration.
When configurations have a common energy E, then they are equally likely, and the total number of con-
figurations Ω(E) can be counted as a function of that energy. Boltzmann then asserted that the entropy of a
system with energy E and possible configurations Ω(E). is

SBoltz = kB ln Ω(E) [Boltzmann entropy], (4)

where kB = 1.3807 × 10−23 J/K is Boltzmann’s constant. The definition Eq.(4) only applied when all the
configurations in a a system had the same total energy, and, consequently, the same probability of occur-
rence.

In 1902, in his treatise Elementary Principles of Statistical Mechanics, Gibbs provided a more general defi-
nition under the circumstances that the probabilities to be in various configurations were not equal because
the energy of each configuration was not equal. Gibbs asserted that the entropy could more generally be
defined as

SGibbs = −kB
∑
{i}

pi ln pi [Gibbs entropy], (5)

where kB is Boltzmann’s constant, i denotes a particular configuration of a system, pi is the probability to
be in that configuration, and

∑
{i} is a summation over all configurations. If there are Ω configurations in a

system, and all of them are equally likely then pi = 1/Ω and Eq.(5) reduces to Eq.(4).
These days Gibbs’s definition of entropy Eq.(5) is taken as the most general form for entropy in physics.

It is consistent with Eq.(4) and can be used to derive the Eq.(1) (for reversible processes). However, it is often
difficult to see how the formula in Eq.(5) represents what we qualitatively understand as entropy. Entropy
is often seen as a proxy for disorder or uncertainty, and in this sense the second law of thermodynamics is
asserting that isolated systems tend to become more disordered as time goes on. However, how is this sense
of disorder encompassed in the definition given in Eq.(5)? That is what we aim to answer in these notes.

Framing Question
Qualitatively, how can we understand Gibbs’s definition of entropy given in Eq.(5)?

Since Eq.(5) is a more fundamental entity than Eq.(4) and Eq.(1), if we can find a way to qualitatively
understand the Gibbs definition of entropy, we should also find better qualitative interpretation of all the

3See ”History and outlook of statistical physics” for a short the history of the subject.

2

https://arxiv.org/pdf/physics/9803005.pdf


2 GUESS THAT NUMBER! - ROUND 1 M. WILLIAMS

others. Our approach to finding a qualitative interpretation of Eq.(5) will seem like a roundabout one. We
will first use a game to motivate a conceptual explanation of the mathematical form of the equation, and
then we will reinterpret the results of the game from a physical perspective.

2 Guess That Number! - Round 1

Figure 2: We have three decks of cards each of which represents a digits place for a three digit number.

Let’s play a game. I have three decks of cards, and each deck contains ten cards with a single number
from 0 to 9 on each card (Fig. 2). We will use the decks collectively to represent a number from 0 to 999.
The first deck represents the hundreds digit; the second deck the tens digit; the third deck the ones digit. I
place each deck in a box and shake the box so that the cards are no longer ordered. From each box I pull out
a single card, and with the cards together I have some hidden number from 0 to 999.

Your task is to determine a questioning strategy which will lead you, on average, to discern the
hidden number in the fewest number of “yes” or “no” questions.

How would you go about this? Assuming you had no knowledge of the most efficient way to search for
the correct number, you might first try to determine the number’s general properties. (With 1000 numbers
to choose from you’d probably immediately realize that asking questions like ”Is it 251?” is a bad way to
proceed). For example, you might ask the following sequence (with my corresponding answers):

1. Is the number a prime number? (Yes)

2. Is the last digit of the number 7? (Yes)

3. Is the hundreds digit an odd number? (No)

4. Is the tens digit an odd number? (No)

With these questions and their answers, you’d be able to discover that the hidden number is 457. All in
four questions, which, given the spectrum of numbers, is quite good. The only problem is this low number
of questions mostly depended on the fact that the number was a prime number, and ”Is the number a prime
number?” was the first question you asked. With that question you reduced the number of possible guesses
from 1000 to 168. In other words, you got lucky, and if, bolstered by your success, you doubled down on
this strategy the next time you played this game, you’d probably find the correct number in many more than
four questions.

Because we’re trying to find the hidden number in the fewest number of questions on average, there
are good questions which consistently represent the best strategy towards eliminating numbers, and there
are bad questions which only work if we’re lucky. The question ”Is the number a prime number” is a bad
question because given that each number between 0 and 999 is equally likely, the question is more likely
to leave us with 832 remaining numbers than with168 which is a poor start if we’re trying minimize the
number of questions we ask.
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To see this play out we’ll continue our example, but let’s now say the number drawn from the boxes was
not 457 and not prime. How would you proceed after the first question, now that you have 832 guesses to
choose from? Another sequence of questions might be:

1. [First Question] Is the number prime (No; 832 #s left; Bad Question)

2. Is the number even? (Yes; 499 #s left; Bad question)

3. Is it divisible by 3? (No; 332 #s left; Bad question)

4. Is it divisible by 5? (No; 266 #s left; Bad question)

5. Is it greater than 505? (Yes; 133 #s left; Good question)

6. Does it have a 9 anywhere? (No; 95 #s left; Bad question)

7. Does the number have an 8 anywhere? (No; 47 #s left; Typically Bad, but this time Good)

You have just asked seven questions, and you still have 47 numbers to choose from (Also, as a practical
matter, by the middle of your questioning, unless you had a running list of numbers, you most likely became
confused as to which numbers were eliminated and which you could still guess from.) Having 47 numbers
left might seem OK unless you knew that if you had employed a more efficient strategy, you would now
have only eight numbers to choose from.

What led you astray is that you asked quite a few “bad questions”. Specifically, any question which
divides the spectrum of numbers into unequal (in number of elements) sets of numbers is a bad question
because the hidden number will more likely be in the larger set of numbers than in the smaller set, and
therefore, on average, you would have to ask more questions than you optimally would have in order to find
the hidden number. Phrased differently, the good questions are those which consistently eliminate half
the spectrum of numbers after each answer4, and if you had consistently employed these good questions
from the beginning you would be down to eight numbers rather than 47.

We still don’t know the new hidden number, so let’s start over. But this time, we’ll go all the way through
with good questions. Here’s a possible sequence of questions:

1. Is the number greater than 500? (Yes; 500 #s left)

2. Is the number greater than 750? (No; 250 #s left)

3. Is the number greater than 625? (No; 125 #s left)

4. Is the number greater than 563? (No; 63 #s left)

5. Is the number greater than 531? (Yes; 32 #s left)

6. Is the number greater than 547? (No; 16 #s left)

7. Is the number greater than 539? (No; 8 #s left)

8. Is the number greater than 535? (No; 4 #s left)

9. Is the number greater than 533? (No; 2 #s left)

10. Is the number 533? (No) −→ The number is 532.
4To be precise, it is those questions which eliminate half the probability-weighted spectrum of numbers, but we’ll get to that later.

Here, for a uniform distribution, the probability weigthed spectrum is just the spectrum itself.
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What we’re doing here is exemplative of a binary search algorithm where one searches for a particular
element in a set by successively eliminating half the elements. For a set with 1000 elements, the total number
of binary-valued questions needed to specify a single element is the number of times you have to divide 1000
by 2 in order to get 1. This is simply the logarithm base 2 of 1000, so

# of Qs to specify 532 = log2 1000 ≈ 9.97 (6)

rounded up, which is 10, as we listed above. We can think of Eq.(6) as the amount of information we needed
to determine the number 532. But the number 532 is not special; we would have needed the same number
of questions to specify any number we drew:

# of Qs to specify any number = log2 1000. (7)

We can now ask a more general question: What is the average number of questions we need to specify a
number? Given Eq.(7) the answer may be clear, but for future reference let’s go through this in some detail.
We recall that, in general, to compute the average of a quantity we have

〈Quantity〉 =
∑
state

p(state)×Quantity(state), (8)

which is a sum over the values of the quantity for each state weighted by the state’s probability. Using Eq.(7)
and the fact that each number from 0 to 999 could be drawn with probability 1/1000, we then find

〈# of Qs 〉 =

1000∑
i=1

1

1000
log2 1000 = log2 1000. (9)

Although the values of Eq.(9) and Eq.(7) are the same, Eq.(9) is representative of our entire set of numbers
while Eq.(7) only represents any particular number. Now, let’s make our game a little more interesting.

3 Guess That Number! Round 2
Although the discussion in the previous section might have seemed involved, it was greatly simplified by the
fact that all of the numbers occurred with equal probability. How should our questioning strategy change
if they didn’t?

We currently still have 10 cards (with numbers from 0 to 9) in each box. Let’s now add to the hundreds
and the tens box, each, eight cards with the number 9. So, now the hundreds and the tens box each have
18 cards, half of which are the number 9 (Fig. 3). We’ll play the same game: I draw a card from each digit
box to create a three digit number. What questions should you ask to guess the card in the fewest number
of questions?

Having learned something from the last round of this game, and recognizing that the spectrum of num-
bers is unchanged (i.e., it is still from 0 to 999), you might proceed with an exact replica of the binary search
strategy we previously employed. Namely, you’d ask if the number is greater than 500, then if it’s greater
than 750 and so on. And while this questioning strategy will definitely allow you to determine the hidden
number in 10 questions, it is a sub-optimal strategy for this new distribution of numbers. This is because
the minimum number of questions we need in order to determine a number is dependent on the probability
that number occurs, and our probability distribution is no longer the same.

We can get a sense of this with an extreme example. Consider the case where for the same spectrum
of numbers, we had a 0.99 probability of finding the number 792 and a 0.01/999 ≈ 0.0001 probability of
finding any other number. Then, although the spectrum of numbers is the same (from 0 to 999), since one
number occurs so much more frequently than the others, we now require fewer questions (on average) to
determine the correct number. Noting the relative probabilities, the first question we would ask is ”Is the
number 792?”. The answer would most likely be “Yes”, and we would have determined the correct number
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Figure 3: To the hundreds and tens decks we add eight “9” cards, thus giving us a 50% chance of drawing
a card with a 9 for each of these digits.

(a) Spectrum of numbers (b) Probability-weighted spectrum of
numbers

Figure 4: Space and Probability-weighted space of numbers for the case where the number 9 comprises half
of both the hundreds and tens deck of cards. We note that although the spectrum of numbers goes from 0
to 999, the 99Zs for example take up 1/4 of the probability-weighted space of numbers (rather than 1/100
of that space as in the previous section). We also note that Fig. 4a would also represent the probability-
weighted space of numbers if each number were equally likely.

after a single question.
This example gives us a clue of how to proceed in this new round of questioning. Recall that we have

the same spectrum of numbers as before except our hundreds digit and our tens digit boxes each are half
composed of cards with a 9. Thus the probability to get a number with a hundreds digit of 9 is 1/2, and the
probability to get a number with a tens digit of 9 is 1/2. Thus the probability breakdown for all the numbers
from 0 to 999 is as follows:

• Probability to get any 99Z number: 1
2 ×

1
2 × 1 = 1

4

• Probability to get any 9AB number (where A 6= 9): 1
2 × (1− 1

2 )× 1 = 1
4

• Probability to get any X9Y number (where X 6= 9): (1− 1
2 )× 1

2 × 1 = 1
4

• Probability to get any CDE number (where C, D 6= 9): (1− 1
2 )× (1− 1

2 )× 1 = 1
4

where, Z, B, Y , and E can be any digit. We now see that we have a probability-weighted spectrum of states
which is distinct from the basic spectrum of states. We schematically depict the two representations of our
state space in Fig. 4.
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In determining a hidden number, we want, as before, to eliminate half of something after each step, but
because the numbers 0-999 are not uniformly distributed it would not be an optimal questioning strategy to
sequester the numbers as if they were. Instead, after each turn, what we actually want to eliminate is half of
the probability-weighted state space. Again, this is because (as in our extreme example with a 0.99 probability
of obtaining 792), the amount of information (i.e., the average number of questions) needed to determine
the hidden number depends on the probabilities of all possible numbers.

Thus, for this new set of numbers the first and second questions we should ask (in either order) are

1. Does the number have a 9 in the hundreds digit?

2. Does the number have a 9 in the tens digit?

These questions are optimal given our distribution of numbers because they have 1/2 a chance of being
answered ”Yes” and hence 1/2 a chance of being answered ”No”, and thus will always eliminate half of
the probability-weighted state space. After these questions, we would be left with numbers of the form
99Z,X9Y (X 6= 9), 9AB (A 6= 9), or CDE (C, D 6= 9). The number of elements and associated relative
probability for each element in these sets of numbers are

• 99Zs: There are 1× 1× 10 possible numbers each of which occur with equal probability.

• 9ABs (A 6= 9): There are 1×9×10 = 90 possible numbers each of which occur with equal probability.

• X9Y s (X 6= 9): There are 9×1×10 = 90 possible numbers each of which occur with equal probability.

• CDEs (C, D 6= 9): There are 9× 9× 10 = 810 numbers each of which occur with equal probability.

Given that the numbers in each of these sets occur with equal probability, we can simply use the standard
binary search strategy within these sets to determine our hidden number. Through this questioning strategy
(the first two questions and then a binary search), we would then have optimally determined the hidden
number in the fewest number of questions on average.

We can now add some theoretical structure to this setup. Using results similar to Eq.(7) and fact that the
numbers in each of our four sets occur with equal probability, we can determine how many questions (after
the first two listed above) we would need to determine the value of the hidden number. Including the two
questions, we have

To determine a You need
99Z 2 + log2 10 questions

9AB (A 6= 9) 2 + log2 90 questions
X9Y (X 6= 9) 2 + log2 90 questions

CDE (C, D 6= 9) 2 + log2 810 questions

Table 1

where the result of each logarithm is rounded up to the nearest whole number. Now, given that each set of
these numbers occur with probability 1/4, the average number of questions needed to specify a number is

〈# of Qs 〉 =
∑
value

p(value)Q(value)

= 1
4 (2 + log2 10) + 1

4 (2 + log2 90)

+ 1
4 (2 + log2 90) + 1

4 (2 + log2 810)

= 2 + 1
4 log2(6.561× 107) ≈ 8.491, (10)

which gives 9 when rounded up. So, on average, we’ll need 9 (as opposed to the 10 of the previous section)
questions to determine the hidden number in this setup.
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4 Generalizing Arguments - Round 3
We’ve been through two rounds of “Guess That Number” and in each round we determined what question-
ing strategy would, on average, have us asking the fewest number of questions to find the hidden number.
But we also determined something else: we specifically calculated what that fewest number of questions
should be. From here we can pursue generality and ask something which can encompass any probability
distribution of numbers.

Question: If the hidden number has a probability pi of being i, what average number of questions
(under an optimal questioning strategy) would we need to ask in order to determine the hidden
number?

We can answer this question by induction, namely by inspecting the results of the previous section and
presenting them with a more general notation. We start by determining the probabilities for the hidden
number to be each kind of number listed in Table 1. From the bulleted lists in the previous section, we see
that the probability p99Z for the hidden number to be a particular number of the form 99Z is 1

4 ×
1
10 = 1

40 . In
general the probabilities pi to find a particular number i are

p99Z = 1
4 ×

1
10 = 1

40 (11)
p9AB = 1

4 ×
1
90 = 1

360 (12)
pX9Y = 1

4 ×
1
90 = 1

360 (13)
pCDE = 1

4 ×
1

810 = 1
3240 . (14)

The word particular is important here, for while there is a 1
4 chance of getting any of the 810 numbers of

the form CDE with (C, D 6= 9), there is only a 1
4 ×

1
810 = 1

3240 chance of getting, for example, the number
523. With these more general representations of the elements of our analys we are now ready present our
previous results in a more general notation. For example, from an inspection of Table 2 we see that the
“number of questions” needed to determine a number in each set can be written in terms of the probabilities
to find that number: We can then rewrite Eq.(10) with an eye toward this notation. Specifically we have

To determine a Number of questions you need
99Z 2 + log2 10 = log2 40 = − log2 p99Z

9AB (A 6= 9) 2 + log2 90 = log2 360 = − log2 p9AB

X9Y (X 6= 9) 2 + log2 90 = log2 360 = − log2 pX9Y

CDE (C, D 6= 9) 2 + log2 810 = log2 3240 = − log2 pCDE

Table 2

〈# of Qs 〉 =
∑
value

p(value)Q(value)

= −
∑
{99Z}

p99Z log2 p99Z −
∑
{9AB}

p9AB log2 p9AB

−
∑
{X9Y }

pX9Y log2 pX9Y −
∑
{CDE}

pCDE log2 pCDE (15)

where each sum runs over all elements in the respective set. Collectively the sums run over all the numbers
from i = 0 to i = 999. Therefore we can simply write
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〈# of Qs 〉 = −
∑
i

pi log2 pi. (16)

Eq.(16) provides a rigorous definition of information. With our optimal questioning strategy we have heuris-
tically derived a formula for the average amount of “information” needed to determine a hidden number.

Noting that our hidden number can more generally be considered to be the hidden state, and that the
collection of numbers we can draw from the three boxes can be considered a system, we can extrapolate a
precise definition of information to be as follows:

Definition 1 The quantity
I = −

∑
i

pi log2 pi (17)

is the average number of binary-valued questions (under an optimal questioning strategy) needed to specify
the state of a system. An ‘optimal questioning strategy’ refers to a series of questions which seek to divide
the probability-weighted space of states in half after each question.

Information: associates the mathematical idea (and somewhat unintuitive label) “information” with the
more precise definition ”the number of binary questions (under an optimal questioning strategy) needed to
specify the state.”

We can even return to the case studied in Sec. 2, and see if the general formula Eq.(16) is consistent
with our results. For this case, each number from 0 to 999 is equally likely and hence each number has a
probability 1

1000 . Thus the information is

I = −
∑
i

pi log2 pi = −
999∑
i=0

1

1000
log2

1

1000
= log2 1000 (18)

which, as we found in Eq.(9), is the average number of questions needed to determine the hidden number.

Exercise: Calculating Information
Calculate the amount of information (defined by Eq.(17)) needed to specify the outcome of the fol-
lowing random trials:

1. A single coin flip for a fair coin

2. A single dice roll for a fair die

3. A single dice roll where there is a 90% chance of getting a 6 and 2% chance of getting any other
value

5 Returning to Physics
In moving to statistical physics, we need to introduce some vocabulary. When we are studying a physical
system, we can characterize the system on at least two size scales. On a large scale we can describe the
macroscopic properties of the system such as the total energy the system contains, its total volume, or its
total magnetization. Such properties constitute descriptions of the system’s macrostate. However, for each
macrostate there are often many different smaller length-scale states associated with it. For example, a box
of particles which have total energy E (a description of the macrostate) can contain many particles with
various energies. For N particles, a particular set of energies E1, E2, . . . , EN defines a microstate of the
macrostate E so long as E = E1 + E2 + · · ·+ EN .

Definition 2 A macrostate of a system is a description of the total system (i.e., at a ”macroscopic” scale),

9
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Figure 5: The macrostate of a system of gas particles can be defined by total energyE. A particular microstate
is a set of energies E1, E2, . . . EN , such that E = E1 + E2 + · · ·EN .

and often is associated with many different configurations of the system. A microstate of a system is a
particular configuration of a macrostate.

Below are some mathematical examples of the relationship between microstates and macrostates. In
each case, the macrostate refers to a description of the system as a whole.

• – macrostate: Choosing four numbers x1, x2, x3, x4 such that their sum is 10.
– microstate: The numbers x1 = 2, x2 = 4, x3 = 3, x3 = 3.

• – macrostate: Getting 5 heads out of 10 coin flips which can be heads (H) or tails (T).
– microstate: Getting HTHHHTTHT in that order for the 10 coin flips.

• – macrostate: Any number between 1 and 10
– microstate: The number 3

Returning to the ”Guess that number” game, we can use the macrostate and microstate language to
describe our results. In the game, our macrostate would be defined as ”numbers between 0 and 999” and
a microstate of the system would be a particular number in this range (e.g., 532). In the first round of the
game, each ”microstate” was equally probable. So, given that we had N = 1000 microstates to choose from,
we found that the information needed to specify a particular microstate of the system was

I = log2 N. (19)

Similarly, in the second and third rounds of the game, we considered microstates which were not equally
probable. Instead the microstate i occurred with probability i. In this case, we discerned that the information
needed to specify the microstate was

I = −
N∑
i=1

pi log2 pi. (20)

Comparing Eq.(19) and Eq.(20) to Eq.(4) and Eq.(5) (and noting that for Eq.(20),
∑N

i=1 represents the sum
over microstates), we find that our definition of information and the physics definitions of entropy differ
merely by a constant. Using the logarithm identity

lnx

ln 2
= log2 x (21)
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Figure 6: Depiction of a system with 17 microstates whose probabilities are proportional to their areas. In a
physical system, we can be given a set of microstates which our system can occupy with various probabilities.
We can compute the entropy of this system by applying Eq.(5).

and in particular considering Eq.(20) and Eq.(5), we find

SGibbs = −kB
∑
{i}

pi ln pi = −kB ln 2
∑
{i}

pi log2 pi = (kB ln 2) I, (22)

or
Gibbs Entropy = (Constant) × (Information needed to specify microstate). (23)

Since the Gibbs entropy is proportional to what we determined to be the information needed to specify a
microstate, we can use this informational interpretation to motivate an understanding of the physics defi-
nition of entropy. The fact that entropy and information differ by a dimensional constant can be seen as a
historical artifact of how entropy was first experimentally defined and the role the natural logarithm plays
in calculus.

Therefore with Eq.(23), we see that our game has already supplied much of the interpretive work in
understanding the Gibbs entropy. In a physical system, we will have many different microstates each of
which occurs with various probabilities. In a way similar to our depiction of the space of numbers in the
second round of the ”Guess that number” game, we can schematically depict these microstates as cells in a
grid with the ratio between the area of the cell and the total area of all cells representing the probability to
be in a particular microstate. When we compute the entropy of such a system (according to the definition
in Eq.(5)) we are essentially computing the amount of information (according to the definition given in Def.
1.) needed to precisely specify a microstate in the system.

So we have an interpretation for
SGibbs = −kB

∑
{i}

pi ln pi, (24)

and from the second law of thermodynamics we know that this quantity increases for isolated systems.
However, this result is not as useful to us as it can be. In particular we know how to compute the entropy
of a system given pi (the probability to be in microstate i) but we don’t know how to calculate pi itself.
In practice, statistical physics goes in the reverse direction: with the definition of entropy in Eq.(24), and
knowing the laws of thermodynamics, we are able to compute pi for a particular microstate. In these notes
we introduced the second law of thermodynamics. Now it’s time to discuss the others.
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