
Massachusetts Institute of Technology MITES 2018–Physics III

Lecture 08: Laplace’s Method and the Mean Field Ising Model

In Lecture Notes 05, we introduced the mean-field Ising Model and determined the thermal equilibrium
properties of the system by analyzing the system’s macrostate. In these notes, we study the same model in
terms of microstates by computing the partition function. Along the way we derive a useful method (called
Laplace’s method) for computing exponential integrals

1 A special kind of integral
One of the first physical models we introduced in the class was the mean-field Ising model in which each of
the N spins in a lattice interacted with every other spin. Given the methods we had developed at the time,
we had to study the model in terms of the macrostate variable average-spin: m =

∑N
i=1 si/N . The utility of

this macrostate analysis was that we were readily able to obtain the phase behavior of the thermal system
by minimizing the Helmholtz free energy. In particular, we found that at thermal equilibrium temperature
T , the average spin m had the value m which satisfied

m = tanh

(
J m

kBT

)
, (1)

where J defined the interaction between spins. Solving Eq.(1) for various parameter choices, we were able
to define two phases for this system, one on either side of the critical temperature Tc = J/kB . Now that
we have developed the partition function and have more rigorously developed the methods of equilibrium
statistical physics, we can analyze the mean-field Ising model in terms of microstates, that is, by applying
the Boltzmann distribution. Such an analysis will be more mathematically elegant than that used in the
macrostate analysis, but it will lead us to a partition function which seems intractable. For our system with
N lattice sites, the partition function of the mean-field Ising model has the form

ZN ∝
∫ ∞
−∞

dx e−Nf(x), (2)

where ”∝” is the symbol for ”proportional to”, and f(x) is not a quadratic function of x. Were f(x) to be
a quadratic function, we could just use the standard formula for Gaussian integrals to evaluate Eq.(2). But,
it turns out, finding an approximation for the more general case of arbitrary f(x) is not too far off from
analyzing a basic gaussian integral.

In these notes we will develop a method to compute integrals like Eq.(2). Such a method is applicable
beyond the context of this problem and we will use it later to analyze a model of single-stranded DNA to
double-stranded DNA dimerization. Outside of our specific uses, this method (under various aliases) is
constantly applied in quantum field theory and condensed matter theory.

Our framing question is as follows:

Framing Questions
How do we analyze the mean-field Ising model using the Boltzmann distribution and
the partition function? And–when we get to it–how do we compute partition functions

of the form Eq.(2)?
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2 MEAN-FIELD ISING MODEL AND ITS PARTITION FUNCTION M. WILLIAMS

2 Mean-field Ising Model and its Partition Function
We make our way towards the final form of the partition function of the mean-field Ising model by first
writing the partition function in terms of the Boltzmann distribution and then using integration identities
to allow us to explicitly compute the summation.

Recalling the starting points of the mean-field Ising model, we have a lattice ofN spins labeled s1, s2, . . . , sN ,
and each spin can take on the value +1 or −1. Each spin interacts with every other spin, and between two
spins, the interaction energy is proportional to J/2N . The resulting total energy for a particular microstate
{si} is given by

E({si}) = −
J

2N

N∑
i,j=1

sisj . (3)

We want to use the partition function to define the equilibrium thermodynamics of the spin system with the
energy Eq.(3). To compute the partition function we need to define our summation over states, in addition
to defining the energy in Eq.(3) and the microstates. We note that each spin is independent of every other
spin. We can therefore sum over all microstates of the system by summing each spin over its two possible
values. The partition function is then

ZN (βJ) =
∑
s1=±1

· · ·
∑

sN=±1
exp (−βE({si}))

=
∑
s1=±1

· · ·
∑

sN=±1
exp

 βJ

2N

N∑
i,j=1

sisj

 (4)

In our previous calculations of the partition function for a spin system, we were able to factor the net Boltz-
mann factor for an arbitrary microstate into a product of Boltzmann factors for each lattice site. Such a
product rendered the partition function soluble. However, no such factoring is possible with the partition
function in Eq.(4). Instead, to move the calculation forward, we need to express the partition function in a
new form. First, we note that a change of variables in a Gaussian integral yields the identity

eb
2/4a =

√
a

π

∫ ∞
−∞

dx e−ax
2+bx. (5)

This identity is true for any real value of b and any positive real value of a. Therefore, we can use the identity
to express the partition function of the mean-field Ising model as an integral. We begin by focusing on the
exponential in Eq.(4). Using Eq.(5), we obtain

exp

 βJ

2N

N∑
i,j=1

sisj

 = exp

1

4

2(βJ)2

NβJ

N∑
i=1

si

N∑
j=1

sj

 = exp

1

4

2

NβJ

(
βJ

N∑
i=1

si

)2
 . (6)

Identifying

b = βJ

N∑
i=1

si, and a =
NβJ

2
, (7)

and using Eq.(5), we find

exp

 βJ

2N

N∑
i,j=1

sisj

 =

√
NβJ

2π

∫ ∞
−∞

dx exp

(
−NβJ

2
x2 + xβJ

N∑
i=1

si

)
. (8)

The choices for a and b in Eq.(7) might seem arbitrary, and to some extent they are arbitrary; physical results
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are independent of how exactly we parameterize our integral. However, the choices in Eq.(7) lead to a
final result for the order parameter of this system which most closely resembles the result of the macrostate
analysis.

Since the x integration in Eq.(5) is independent of the summations over sk, we can move the integral
outside the summation. Applying product identities for the exponential, we then find

ZN (βJ) =
∑
s1=±1

· · ·
∑

sN=±1

√
NβJ

2π

∫ ∞
−∞

dx exp

(
−NβJ

2
x2 + xβJ

N∑
i=1

si

)

=

√
NβJ

2π

∫ ∞
−∞

dx e−NβJx
2/2

N∏
j=1

∑
sj=±1

exβJsj

=

√
NβJ

2π

∫ ∞
−∞

dx e−NβJx
2/2 2N coshN (βJx), (9)

where we used cosh(x) = (ex + e−x)/2 in the second line. With the identity A = elnA, we then have

ZN (βJ) =

√
NβJ

2π

∫ ∞
−∞

dx e−Nf(x,βJ), (10)

where we defined
f(x, βJ) =

βJ

2
x2 − ln [2 cosh(βJx)] . (11)

Eq.(10) may appear to be a fine form for the partition function, but it is not yet in a form that makes manifest
the phase behavior of the system or how to compute the order parameter. For example, given our previous
partition function, we might want to compute

〈s〉 ≡ 1

N

N∑
i=1

〈si〉, (12)

representing the microstate-averaged spin of the system. By determining the temperature dependence of 〈s〉
we will be able to determine whether the system exhibits a phase transition. But of course we have already
answered this question: We previously used an analysis grounded in macrostates to show that the system
indeed undergoes phase transitions, so our partition function based calculation of 〈s〉 should simply affirm
this result.

With our original partition function Eq.(4), Eq.(12) can be found from

〈s〉 = 1

ZN (βJ)

1

N

∑
s1=±1

· · ·
∑

sN=±1

N∑
i=1

si exp

 βJ

2N

N∑
i,j=1

sisj

 , (13)

however this form does not admit an explicit equation which can be solved to yield the temperature depen-
dence of 〈s〉. Instead, in order to calculate 〈s〉, we will use Eq.(10) as a starting point, and doing so requires
us to find a way to reduce the associated integral to something more analytically tractable. We turn to this
task now.

3 Laplace’s Method and Evaluating Exponential Integrals
Our objective is to find a way to evaluate the integral in Eq.(10) (if only approximately) and other integrals
similar to it. The first such integral we have encountered in this course was the standard Gaussian integral.
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e−(x−2)
2+ln[2 cosh(x)]

e−(x−3/2)
2/6

x

Figure 1: Approximation as a Gaussian. The Gaussian function e−(x−3/2)2/6 is plotted in the blue dashed
line and the exponential function e−(x−2)2+ln[2 cosh(x)] is plotted in the solid black line. We see that the ex-
ponential function can be roughly approximated as a Gaussian function.

In Assignment # 2, we were able to show that∫ ∞
−∞

dx e−x
2

=
√
π. (14)

More generally, a change of integration variables, leads us to the result∫ ∞
−∞

dx e−ax
2+bx+c =

√
π

a
eb

2/4a+c, (15)

which is valid for a ≥ 0 and any real numbers b and c. Now let’s consider the integral of the kind that
appears in Eq.(10). We define

IN =

∫ ∞
−∞

dx e−Nf(x), (16)

for some positive N . Integrals of the form Eq.(16) cannot in general be computed exactly unless they are
of the form Eq.(15). However, it turns out that we can use Eq.(15) to compute an approximation of Eq.(16)
(presuming the latter is a finite integral).

We will assume that IN is a finite integral, meaning that it evaluates to a finite number. Then we can
make certain assumptions about the integrand. Since the exponential function ex diverges to infinity as x
increases, the only way integrating e−Nf(x) from x = −∞ to x = +∞ could yield a finite result is if e−Nf(x)
went to zero as xwent to±∞. However, because the exponential function is always positive, we should also
find that e−Nf(x) is non-zero for some finite portions of its domain. Schematically, then, we could expect
e−Nf(x) to have a plot that looks like a hill which flattens as x varies away from the top of the hill.

The key thing to note about this plot is that it looks like a Gaussian function (See Fig. 1 for an N = 1
example). The essence of our approximation of Eq.(16) uses this fact to consider only terms up to quadratic
order in the argument of the exponential, and to thus approximate e−Nf(x) as the Gaussian it appears to be.
Namely, let’s say e−Nf(x) is highly peaked at some x = x1. If e−Nf(x) has a local maximum at x = x1, then
f(x) must have a local minimum at x = x1. That is, at x1, the first derivative of f(x) should be zero, and the
second derivative should be positive.

Local maximum of e−Nf(x): If e−Nf(x) has a local maximum at x = x1, then f(x) has a zero
first derivative and a positive second derivative at x = x1. That is, f(x) has a local minimum at
x = x1.
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Given that e−Nf(x) is highly peaked around x = x1, we can assume that the values of x near x1 are the ones
most relevant to the integral. We can capture these values of the integrand e−Nf(x) by expanding f(x) about
its local minimum at x = x1. Doing so, we have

f(x) = f(x1) + (x− x1)f ′(x1) +
1

2
(x− x1)2f ′′(x1) +O

(
(x− x1)3

)
' f(x1) + (x− x1)f ′(x1) +

1

2
(x− x1)2f ′′(x1). (17)

In the final line we dropped the terms of order (x− x1)3 and higher because such terms make sub-leading
contributions to the final evaluation of the integral. Now, we recall that since e−Nf(x) has a local maximum
at x = x1, then f(x) has a local minimum at the same value of x. Thus, we have f ′(x1) = 0, and our
approximation of f(x) near x = x1 becomes a quadratic function of x:

f(x) ' f(x1) +
1

2
(x− x1)2f ′′(x1). (18)

Inserting this representation of the function into the integral Eq.(16), we find

IN '
∫ ∞
−∞

dx exp

(
−Nf(x1)−

N

2
(x− x1)2f ′′(x1)

)
. (19)

But now Eq.(19) is in a form we can evaluate. Making the u-substitution u = x− x1, yields∫ ∞
−∞

dx exp

(
−Nf(x1)−

N

2
(x− x1)2f ′′(x1)

)
= e−Nf(x1)

∫ ∞
−∞

du exp

(
−N

2
f ′′(x1)u

2

)
=

√
2π

Nf ′′(x1)
e−Nf(x1), (20)

so that, finally, we have the approximation

IN =

∫ ∞
−∞

dx e−Nf(x) '

√
2π

Nf ′′(x1)
e−Nf(x1) [Laplace’s Method]. (21)

We note that the form of this approximation already has built into it, the requirement that f ′′(x1) be positive
(and hence that e−Nf(x) has a local maximum at x = x1) because if f ′′(x1) were negative, then taking its
square root would yield an imaginary number. But we cannot have an imaginary number on the right hand
side of Eq.(21) because we know that the integral (if f(x) is a continuously differentiable function over the
entire real axis) is real.

Now, no talk of approximations is permissible without also talking about error. For simplicity, we did
not keep track of the errors in this approximation, but any such error arises from the O

(
(x− x1)3

)
term

we dropped after the Taylor expansion of f(x). Had we kept track of these errors, we would have found
O
(
N−3/2

)
corrections to our approximation. So, rather than Eq.(21) we could write

IN =

√
2π

Nf ′′(x1)
e−Nf(x1) +O

(
N−3/2

)
. (22)

We note that Eq.(22) shows the error term getting smaller as N →∞. Thus the approximation Eq.(21) gets
better and better for large N . For calculational purposes, we will assume we are always working in this
”large N limit” and Eq.(21) will suffice.
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The approximation Eq.(21) is called Laplace’s method1 and it is applied in many areas of physics (like
quantum field theory and statistical field theory) where ”Gaussian-like” integrals need to be evaluated. With
Eq.(21), we can return to our calculation of the partition function Eq.(10) and evaluate it approximately.

4 Return to the partition function
For our mean-field Ising model, we found the partition function

ZN (βJ) =

√
NβJ

2π

∫ ∞
−∞

dx e−Nf(x,βJ), (23)

where
f(x, βJ) =

βJ

2
x2 − ln [2 cosh(βJx)] . (24)

Implementing, Laplace’s method defined in Eq.(21), we obtain the approximate result

ZN (βJ) '
√
NβJ

2π

√
2π

Nf ′′(x, βJ)
e−Nf(x,βJ) =

√
βJ

f ′′(x, βJ)
e−Nf(x,βJ), (25)

where x is defined by
∂

∂x
f(x, βJ)

∣∣∣
x=x

= 0. (26)

Computing Eq.(26), we find

∂

∂x
f(x, βJ)

∣∣∣
x=x

= βJ x− βJ tanh(βJx) = 0, (27)

which yields the condition
x = tanh(βJx). (28)

Although, it is perhaps not apparent in the relationship between Eq.(23) and Eq.(12), one can show (See
Appendix A for the demonstration) that the average spin 〈s〉 is related to x through

〈s〉 ' tanh(βJx). (29)

Therefore, with Eq.(28), we can identity x with 〈s〉. Writing Eq.(28) in terms of 〈s〉, we then find that the
microstate-averaged spin satisfies

〈s〉 = tanh (βJ〈s〉) , (30)

which is identical to the result Eq.(1), if we identify m = 〈s〉. We obtained Eq.(1) through an analysis of the
macrostate of the mean-field Ising model, so it is gratifying that we obtained an identical result when we
analyzed the system in terms of microstate probabilities.

Similar to our work in Lecture Notes 05 ”Free Energy and Order Parameters”, we can analyze the solu-
tions to Eq.(30) as we change T and ultimately show that this system exhibits two phases separated by the
temperature Tc = J/kB . We forgo describing the phase behavior since it is discusses in Lecture Notes 05.

Aside: Second Derivative of f(x, βJ)
Although, we do not really need it in order to establish the correspondence between Eq.(1)
and Eq.(28), we can compute the second derivative of Eq.(24) at x = x to complete the

1It also falls under the title ”method of steepest descent” and ”saddle point approximation”.
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evaluation of the partition function Eq.(23) . We find

f ′′(x, βJ) = βJ − (βJ)2

cosh2(βJx)

= βJ

(
1− βJ

cosh2(βJx)

)
= βJ

(
1− βJ(1− tanh2(βJx))

)
= βJ

(
1− βJ(1− x2)

)
. (31)

In the first line we used d tanh(x)/dx = 1/ cosh2(x); in the third line we used 1−tanh2(x) =
cosh2 x; and in the final line we used Eq.(28). Requiring, f ′′(x, βJ) to be greater than zero
thus yields the condition

x2 > 1− 1

βJ
. (32)

With x identified with 〈s〉, Eq.(32) becomes

〈s〉2 > 1− 1

βJ
. (33)

which reproduces Eq.(42) in Lecture Notes 05.

5 Final Remarks
Although we managed to re-derive the fundamental equation (i.e., Eq.(30)) defining the phase behavior
of the mean-field Ising Model, the main purpose of these notes was to introduce a method (i.e., Laplace’s
method) for evaluating integrals of the form

ZN ∝
∫ ∞
−∞

dx e−Nf(x). (34)

Now that we have managed to achieve this objective, we are prepared to apply it to many different problems
in statistical physics which result in integral-defined partition functions. In the next lecture notes, we apply
this method to studying a model of DNA dimerization.

A Demonstrating relationship between 〈s〉 and x

We want to establish the relationship between the average spin 〈s〉 and the value of x at which f(x, βJ) is
minimized. We begin with the definition of the average spin:

〈s〉 = 1

ZN (βJ)

1

N

∑
s1=±1

· · ·
∑

sN=±1

N∑
i=1

si exp

 βJ

2N

N∑
i,j=1

sisj

 , (35)

We can write this definition in terms of the partition function alone by using a different energy function. Let
us define the energy

E({si}) = −
J

2N

N∑
i,j=1

sisj − h
N∑
j=1

sj . (36)
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The partition function associated with this energy is then

ZN (βJ, βh) =
∑
s1=±1

· · ·
∑

sN=±1
exp

 βJ

2N

N∑
i,j=1

sisj + βh

N∑
j=1

sj

 . (37)

Computing the βh partial derivative of this partition function, we find

∂

∂(βh)
ZN (βJ, βh) =

∑
s1=±1

· · ·
∑

sN=±1

N∑
j=1

sj exp

 βJ

2N

N∑
i,j=1

sisj + βh

N∑
j=1

sj

 , (38)

which would be proportional to Eq.(35) if we were to take h = 0. Therefore, we can write Eq.(35) exactly as

〈s〉 =
[
1

N

1

ZN (βJ, βh)

∂

∂(βh)
ZN (βJ, βh)

]
h=0

=

[
1

N

∂

∂(βh)
lnZN (βJ, βh)

]
h=0

. (39)

Now, going through a similar application of the Gaussian integral identity, we can write Eq.(37) as

ZN (βJ, βh) =
∑
s1=±1

· · ·
∑

sN=±1

√
NβJ

2π

∫ ∞
−∞

dx exp

(
−NβJ

2
x2 + (xβJ + βh)

N∑
i=1

si

)

=

√
NβJ

2π

∫ ∞
−∞

dx e−NβJx
2/2

N∏
j=1

∑
sj=±1

e(xβJ+βh)sj

=

√
NβJ

2π

∫ ∞
−∞

dx e−NβJx
2/2 2N coshN (β(xJ + h)), (40)

or as

ZN (βJ, βh) =

√
NβJ

2π

∫ ∞
−∞

dx e−Ng(x,βJ,βh), (41)

where
g(x, βJ, βh) =

βJ

2
x2 − ln [2 cosh (β(xJ + h))] . (42)

In order to approximate Eq.(41) via Laplace’s method, we need to find the local minimum of Eq.(42). Com-
puting the first derivative of Eq.(42) and setting the result to zero at x = x0 in a way similar to the calculation
in Sec Sec. 4, we find the condition

x0 = tanh (β(x0J + h)) . (43)

We see that if we were to set h = 0 in Eq.(43), then x0 would reduce to x defined in Eq.(28). Now, approxi-
mating Eq.(41) by its Laplace’s method expression, we have

ZN (βJ, βh) =

√
βJ

Ng′′(x0, βJ, βh)
e−Ng(x0,βJ,βh) +O

(
N−3/2

)
, (44)

where we used Eq.(22) to state the error exactly. Taking the logarithm of Eq.(44) and differentiating with
respect to (βh), we obtain

∂

∂(βh)
lnZN (βJ, βh) =

∂

∂(βh)
ln

[√
βJ

Ng′′(x0, βJ, βh)
e−Ng(x0,βJ,βh)

]
+O

(
N−3/2

)
=

∂

∂(βh)

[
−Ng(x0, βJ, βh) +O(N0)

]
8
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= −N ∂

∂(βh)

[
βJ

2
x20 − ln [2 cosh (β(x0J + h))] +O(N−1)

]
= N tanh (β(x0J + h)) +O(N0), (45)

where in the second line we represented all terms not proportional to N as at least O(N0) and in the final
line we used the fact that the coefficient of the ∂x0/∂(βh) term was zero. Finally, using Eq.(45) in Eq.(39),
we find

〈s〉 =
[
tanh (β(x0J + h)) +O(N−1)

]
h=0

. (46)

From x’s definition in Eq.(28), it is clear from Eq.(43) that x0 becomes x when we take h = 0. Therefore,
taking h = 0 in Eq.(46), we obtain

〈s〉 = tanh (βJx) +O(N−1), (47)

thus proving Eq.(29).
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