
Massachusetts Institute of Technology MITES 2018–Physics III

Assignment 4: Free Energy and Partition Functions

Due Tuesday July 17 at 11:59PM under Fernando Rendon’s door

Preface: In this assignment, we apply our understanding of free energy to compute how the average spin
of a spin system is affected by an external magnetic field. We then compute partition functions for various
systems. In the penultimate problem, we derive the formula for the number of derangements of a list, and
thus establish the mathematical groundwork for the final problem: the statistical physics of permutations.

1. Spins in a Magnetic Field: Macrostates

Figure 1: N spins in an external magnetic field H . If a spin si is pointing in the same
direction as the magnetic field, then its energy is −µH , and if the spin is pointing in
the opposite direction as the field, then its energy is +µH .

We haveN spins in a magnetic fieldH . The spins are denoted s1, s2, . . . , sN each of which can take on
the value si = ±1, and the system has an energy given by

E = −µH
N∑
i=1

si. (1)

We define the average magnetization of the system as

m =
1

N

N∑
i=1

si. (2)

The system is in thermal equilibrium at a temperature T .

(a) Write the free energyFN (m,T ) of the system as a function of the order parameterm. Use Stirling’s
approximations and some algebra to simplify the entropic term as much as possible. (You can quote
the relevant entropy result from the notes).

(b) Compute the value of m for which the free energy in (a) is at a local minimum. Denote this
quantity as m. (You should find m as a function of the parameters of the problem.)

(c) Plot m as a function of H for three different values of temperature. (Hand drawn plots are fine.).
(d) As T → 0, what happens to m? What happens to the entropy of the system? (Demonstrate both

results analytically)
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Hint: For part (a), I strongly recommend you do a close reading of the last sections of Lecture Notes 05 ”Free
Energy and Order Parameters” so you don’t spend time re-inventing the wheel.

2. Open and Closed Ion Channel
An ion channel can be in either an open or a closed microstate (shown in Fig. ??). When the channel
is open, the system has energy εopen, and when the channel is closed, the system has energy εclosed.

(a) Ion channel in open microstate (b) Ion channel in closed microstate

Figure 3

(a) Our system exists in thermal equilibrium at temperature T . Compute the partition function for
this system.

(b) Define ∆ε ≡ εclosed − εopen. What is the probability to be in the open state as a function of T and
∆ε? Plot a schematic of this probability as a function of T . (A hand-drawn plot is fine.)

(c) Using the Gibbs definition, compute the entropy of this system as a function of T and ∆ε. Cal-
culate the value of this entropy when T → 0.

3. Lattice Model of a Single Dimer
At thermal equilibrium defined by a temperature T , say we have two identical particles and L lattice
sites arranged along a line. Each of these lattice sites can be occupied by at most one particle at a time.
When the particles are on adjacent lattice sites, the system has an energy −E0 and we say the system
exists as a dimer. When the particles are separated by at least one lattice site, the system has an energy
0.

Figure 4: A possible microstate in a L = 10 system. This microstate has energy
E = 0.

(a) What is the partition function of this system? Hint: You will have to determine the microstates and the
energy of each microstate.

(b) What is the probability to be in the dimerized state?
(c) Below what temperature is there a higher likelihood to be in the dimerized state?

4. Spins in a Magnetic Field: Microstates
If we have N spins (labeled s1, . . . sN ) in a magnetic field H , the energy of a particular microstate is
given by

E ({si}) = −µH
N∑
i=1

si, (3)
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where µ is a magnetic dipole moment. By summing over each value of si, weighted by the appropriate
Boltzmann factor, we find the partition function

ZN (βµH) =
∑

{sj=±1}

exp

(
βµH

N∑
i=1

si

)
= 2N coshN (βµH) , (4)

where cosh(x) is the hyperbolic cosine defined as

cosh(x) =
ex + e−x

2
. (5)

However, we can compute this partition function in a different way.

(a) Letting n↑ be the number of spins with the value +1 and n↓ be the number of spins with the value
−1, argue that the partition function for this system can be written as

ZN (βµH) =

N∑
n↑=0

(
N

n↑

)
eβµH(n↑−n↓). (6)

We term the factor
(
N
n↑

)
the degeneracy factor of the state characterized by n↑ +1 spins. The

degeneracy factor defines the number of individual microstates associated with the macrostate
defined by n↑.

Aside: In general, when computing the partition function of a system in terms of the macrostate
(instead of the microstate), we compute the product between the Boltzmann factor and the degen-
eracy factor of a macrostate and then we sum over all macrostates of the system. In the standard
formula for the partition function, we sum over microstates which are uniquely specified and
thus have a degeneracy factor of 1.

(b) Using the Binomial theorem and the fact that n↓ = N − n↑, show that Eq.(6) reproduces the final
equality in Eq.(4).

5. Number of Derangements
Say we have an original list of items. A derangement of this list is a permutation in which no element
in the list is in its original position. In this problem we determine the general formula for the number
of derangements of an N item list.
If we have a list of three elements (1, 2, 3) we know there are 3! = 6 ways we can order the elements.
But how many ways can we order these elements such that 1 is not the first element, 2 is not the second
element, and 3 is not the third element? That is, for this list of three elements, how many possible
derangements are there? We will answer this question in two ways: One by brute force and the other
through a derivation which can be generalized.

(a) Brute Force: List all the permutations of the three elements 1, 2, 3. How many permutations have
neither 1, 2, nor 3 in the first, second, or third positions, respectively?

(b) Generalizable derivation: We can represent the number of permutations of the elements 1, 2, 3 as
a three circle Venn diagram where each circle contains permutations for which the associated
number is in its original position:
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A1

A2

A3

# of orderings
with ”2” in 2nd

position

# of orderings
with ”1” in 1st

position

# of orderings
with ”3” in 3rd

position

Figure 5: The circleAk represents all the orderings such that k is in the kth position. To find
the number of derangements, we will count the number of unique elements in the above
diagram and subtract the result from the total number of permutations of three elements.

i. We use ∩ to define overlaps between areas in the diagram and | | to denote the total number
of orderings associated with an area. For example, |Ak| is the total number of orderings such
that k is in the kth position, |Ak ∩ A`| is the total number of orderings such that k and ` are
in the kth and `th positions respectively, and so on.

Express the total number of unique orderings in the entire Venn diagram using this || and ∩
notation. Simplify the result as much as possible.

(Hint: There should be seven terms. If we only had two overlapping circles the answer would be
|A1|+ |A2| − |A1 ∩A2|.)

ii. Express each of the terms in i. as a factorial (Note: 0! = 1.), and rewrite the result of i. in
terms of these factorials. The final expression should have three terms.

iii. The result calculated above is the number of ways to order the numbers 1, 2, 3 such that at
least one element is in its original position. How can we compute the number of ways such
that no element is in the original position?

We call this quantity d3 (as in ”derangements for a list of three elements”). Write d3 as an
expression with four terms (again keep the factorial symbols).

iv. Express d3 in summation notation. Namely find an expression

d3 =

3∑
j=0

(something), (7)

where ”something” is a function of j. (Hint: for j = 0, 1, 2, 3,
(
3
j

)
= 1, 3, 3, 1.)

v. Say we have N numbers 1, 2, . . . , N . Generalizing the formula above, find an expression for
dN , the number of derangements of a list of N elements.

(c) Use the formula for dN in (b) v. to fill in the following table:
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Number of Elements
in List

Number of
Derangements

1 –
2 –
3 –
4 –

6. (Moved to Problem Set 5 as a Challenge Problem)
Statistical physics of permutations, I
We have 2N objects consisting of N objects of type-B denoted B1, B2, . . . , BN and N objects of type-
W denoted W1,W2, . . . ,WN . The objects can only exist in (Bk,W`) pairs, and the mircostates of our
system are defined by a particular collection of pairings between the Bs and W s. Fig. 6 depicts one
such microstate for N = 15.

Figure 6: A particular microstate of a N = 15 system.

The energy of a microstate is the sum of the energies of all the pairs. The energy of a particular pair
(consisting of (Bk,W`)) is

E(Bk,W`) =

{
0 if k = `,

λ if k 6= `,
(8)

where λ > 0 is a parameter with units of energy. Namely, from Eq.(8), if a pair consists of (Bk,Wk), for
any k, then the energy of the pair is zero, and if a pair consists of (B`,Wk), for ` 6= k, then the energy
of the pair is λ. We call the former a ”matched pair” and the latter a ”mismatched pair”.

(a) How many possible microstates are there for a system with N Bs and N W s?
(b) Let j be the number of mismatched pairs in a microstate. What is the energy of a microstate

written in terms of j? What is the energy for the microstate shown in Eq.(8)?
(c) Let j be the number of mismatched pairs. Argue that the partition function for a system ofN Bs

and N W s (governed by the energy Eq.(8)) can be written as

ZN (βλ) =

N∑
j=0

gN (j)e−βλj , (9)

and explain what gN (j), λj, and the summation gN (j) represent. (Hint: Consider Eq.(6) as the
analogous expression for a spin system in a magnetic field.)

(d) We can write gN (j) as

gN (j) =

(
N

j

)
dj , (10)
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where dj is the number of derangements of j elements. Using the formula for dj derived in
problem 4 of this assignment, the Binomial theorem, and the integral expression for M !

M ! =

∫ ∞
0

dx e−xxM , (11)

derive an integral expression forZN (βλ). The final expression should not have any un-evaluated sums.
Hint: You should first use Eq.(11) to express dj as an integral and then use the result in Eq.(10) and Eq.(9).
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