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Mean-Field Ising Model

Week Summary
In this problem sheet, you will work in your group in order to make a small contribution to a larger problem.
We will consider what is known as the mean-field Ising model. An Ising model is generally any model
involving spins (i.e., quantities that can take on a +1 or−1 value). A mean-field Ising model is one in which
each spin interacts with the mean field created by all other spins.

We use this model as our first quantitative example of how temperature can define the phase of a system.
In particular, we will show how the macrostate of this system (defined by the average-spin) varies as a
function of temperature and allows us to define a disordered and ordered phase for the system.

Figure 1: Particular microstate of mean-field Ising sys-
tem. The general form of the energy is included to the
right.

We consider a system with arbitrary dimension and size. Inside this system there are many magnetic
dipoles which we represent schematically as arrows in Fig. 1. In quantum mechanics, the magnetic dipoles
of electrons arise from the angular momentum spin of these electrons. Therefore, we simply call these
dipoles ”spins” and require them to either point up (associated with a +1 value) or down (associated with
a−1) value1. Specifically, we haveN of these spins each of which is denoted si for the ith spin. Each spin si
can have the value +1 or −1.

1From quantum mechanics, electron spin, when measured, can point either up or down relative to some coordinate axis.
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1. Free Energy of Mean-Field Ising Model
Our ultimate goal for this problem is to write the free energy of the system as a function of the mean
spin m =

∑N
i=1 si/N .

(a) For a collection of spins {si} in a magnetic fieldH , where each spin has magnetic dipole moment
µ, the energy of the system is

E = −µH
N∑
i=1

si. (1)

For the mean-field Ising model, we take the magnetic fieldH to be generated entirely by the mean
of the spins {si} (hence the name ”mean-field”). In particular we define,

H =
H0

N

N∑
j=1

sj [Assumption of mean-field Ising model], (2)

where H0 is some constant with units of magnetic field. Given that we can write Eq.(1) as

E = − J

2N

N∑
i,j=1

sisj , (3)

(where summations over both indices run from 1 to N ) what is J?
(b) We define the mean spin for this system as

m =
1

N

N∑
i=1

si. (4)

Write the energy explicitly as a function of m. We denote this energy now as EN (m).
(c) Say our system has n↑ spins and n↓ spins. What is m in terms of n↑ and n↓?
(d) Write the entropy of this system as a function of m with N included as a constant parameter.

Denote this entropy as SN (m). (Your final answer will include factorials).
(e) What is the free energy FN (m,T ) of this system? Your final result should have m, J , N , T (tem-

perature), and kB .
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2. Stirling’s Approximation of Free Energy
The goal of this part of the problem is to eliminate the factorials from the expression for the free energy.

As a function of the mean spin

m =
1

N

N∑
i=1

si, (5)

the free energy of the system of our mean-field Ising model can be written as

FN (m,T ) = −JN
2
m2 − kBT ln ΩN (m), (6)

where T is temperature and where

ln ΩN (m) = lnN !− ln
[
N
2 (1 +m)

]
!− ln

[
N
2 (1−m)

]
!. (7)

(a) Using the further simplified form of Stirling’s approximation2

lnN ! = N lnN −N, (8)

show that Eq.(7) can be written as

ln ΩN (m) = Nc0 −
N

2
g(m)− N

2
h(m), (9)

where c0 is anm-independent constant, and g(m) and h(m) are two different functions ofm. De-
termine c0, g(m), and h(m).

Hint: The best way to solve this problem is to apply Eq.(8) to Eq.(7) and keep simplifying until you get a
result of the form Eq.(9).

2Of course, the nature of an approximation is that it is an approximation and not an equality, but we use the equality here because it
is simplest to do so.
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3. Local Minimum of Mean-Field Ising Model
The goal of this problem is to find the value of m that defines the local minimum of the free energy
FN (m,T ) of our system.

(a) As a function of the mean spin, defined as

m =
1

N

N∑
i=1

si, (10)

the free energy of our system, can be written as

FN (m,T ) =
N

2

[
−Jm2 + kBT

(
ln(1−m2) +m ln

1 +m

1−m

)]
. (11)

In terms of the parameters of the free energy, determine the two conditions that m must satisfy
in order to be a local minimum of FN (m,T ).

(b) We can define the hyperbolic tangent as

tanh(x) =
ex − e−x

ex + e−x
. (12)

Show that if we have
tanh(x) = y, (13)

that
y =

1

2
ln

(
1 + x

1− x

)
. (14)

(c) Use Eq.(14) to write one of the conditions from (a) in terms of the hyperbolic tangent function.
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4. Plot of Free Energy Function and Minimum
The goal of this problem is to represent graphically, the local minimum of the free energy of the Free
energy of our system.

(a) We can write the free energy of this system in terms of a function f(m) where

f(m) = −m2 + λ

[
ln(1−m2) +m ln

1 +m

1−m

]
, (15)

and λ is a tunable parameter. If the local minimum of Eq.(15) occurs at m = m then m obeys
equation

m = tanh

(
m

λ

)
, (16)

where tanh(x) is the hyperbolic tangent defined as

tanh(x) =
ex − e−x

ex + e−x
. (17)

(b) Plot Eq.(15) for various choices of λ. What value of of λ separates the plots where f(m) has two
local minima from those where f(m) has only one local minimum?

(c) Plot the left and the right hand side of Eq.(16) (on the same plot) for various choices of λ. What
value of λ separates the plots where Eq.(16) has three solutions from those where it has only one
solution?

(d) Using the result from (b), plotm as a function of λ. Make sure your plot shows all of the solutions
of Eq.(16).
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