
PHYSICAL REVIEW E 109, 044151 (2024)

Large-W limit of the knapsack problem

Mobolaji Williams *

Jellyfish, 225 Franklin St, 20th Floor, Boston, Massachusetts 02110, USA
and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 3 August 2023; accepted 25 March 2024; published 29 April 2024)

We formulate the knapsack problem (KP) as a statistical physics system and compute the corresponding
partition function as an integral in the complex plane. The introduced formalism allows us to derive three
statistical-physics-based algorithms for the KP: one based on the recursive definition of the exact partition
function, another based on the large weight limit of that partition function, and a final one based on the
zero-temperature limit of the second. Comparing the performances of the algorithms, we find that they do not
consistently outperform (in terms of runtime and accuracy) dynamic programming, annealing, or standard greedy
algorithms. However, the exact partition function is shown to reproduce the dynamic programming solution to
the KP, and the zero-temperature algorithm is shown to produce a greedy solution. Therefore, although dynamic
programming and greedy solutions to the KP are conceptually distinct, a statistical physics formalism introduced
reveals that the large weight-constraint limit of the former leads to the latter. We conclude by discussing how to
extend this formalism in order to obtain more accurate versions of the introduced algorithms and other similar
combinatorial optimization problems.
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I. INTRODUCTION

The knapsack problem (KP) is a classic problem in com-
binatorial optimization. In the 0-1 version of the problem
[1], we begin with N objects labeled i = 1, 2, . . . , N where
each object can be included or excluded from a collection.
When in the collection, the object i has a value vi and a
weight wi, and the objective is to find the combination of
objects that maximizes the total value while remaining under
a given total weight W , called the “weight limit.” A particular
collection of objects is defined as x = (x1, x2, . . . , xN ) with
xi = 1 or xi = 0 for object i being included or excluded, re-
spectively, in the collection, and the weight and value vectors
are w ≡ (w1,w2, . . . ,wN ) and v ≡ (v1, v2, . . . , vN ), respec-
tively. Then the objective in solving the KP is to find x that

maximizes v · x subject to the constraint w · x � W , (1)

where a · b ≡ a1b1 + a2b2 + · · · + aN bN . For simplicity, we
take vi, wi, and W to be positive integers.

Among the many standard algorithms for solving the KP
[2,3], there exists a stochastic approach motivated by the
physical process of annealing. In the simulated annealing
approach to the KP, the negative of the total value of the
collection of objects is taken to be the energy of the system,
and the system evolves by stochastically sampling the possi-
ble objects that can be included in the collection consistent
with the weight limit. During this evolution, the temperature
parameter is slowly (e.g., logarithmically in time [4]) lowered
until the system has settled into its maximum-value collection
of objects that is consistent with the weight constraint.

In this work, we analytically model the physical system
at the heart of the simulated annealing solution to the KP.
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Specifically, we compute the thermal partition function for
the KP and derive expressions for the average occupancy of
each object. By using contour integral identities, we represent
an intuitive summation over a discrete state space as an ab-
stract integration over a continuous contour in the complex
plane, and then, by taking the large-W limit of the partition
function, we transform our discrete-space optimization objec-
tive with a constraint into a continuous-space optimization
objective with no constraint. The transformation allows us
to optimize our problem using analysis, thereby simplify-
ing an originally discrete-space analysis. A similarly inspired
approach was taken in [5] by using a mean-field approx-
imation and the saddle-point approximation to model the
annealing of a spin system, and here we use similar methods
to derive algorithms for the KP and then use the formalism
to understand the relationships between more well-known
algorithms.

This work exists at the intersection of combinatorial op-
timization and statistical physics and reflects the theme of
gaining insights into the former by representing them as the
latter [6,7]. Importantly, this particular intersection makes
use of a convenient confluence between statistical physics
and combinatorial optimization: While problems in statistical
physics tend to get easier as we increase the number of de-
grees of freedom N (due to the availability of approximation
schemes), problems in combinatorial optimization tend to be-
come more difficult as we increase N due to the increased
computation time (Fig. 1) needed to solve them.

The relationship between N � 1 problems in computer
science and N � 1 limits in statistical physics has been
explored in the past [8–11], but generally the focus of
these works has been on studying the ground states of spin
glasses or, for the KP in particular, on using annealed ap-
proaches [12] or replica methods [13–15] to study the ground
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FIG. 1. Schematic of accuracy-complexity tradeoff in combinatorial optimization and statistical physics. Combinatorial optimization
algorithms are exact, but they often have exponential complexity. N � 1 statistical physics “algorithms” are approximate but become more
accurate as N gets larger, and they have subexponential complexity since they are based on evaluating expressions rather than on enumerating
an exponential number of states. The relatively quick N � 1 limit physical analog of a combinatorial optimization problem should be most
accurate in the same numerical regime where the exact optimization algorithm takes the longest time to compute.

states of physical analogs of combinatorial optimization prob-
lems rather than on using statistical physics, outside the
replica approach, to find specific solutions to the problems
themselves. In the current work, we translate the KP into a
physical system with the primary goal of finding a framework
for solving the former and for understanding relationships
between two of its standard solutions.

In Sec. II we implement this translation by first deriving
the exact partition function for the system. We show that this
partition function can be defined through a recurrence relation
that reproduces the standard dynamic programming solution
to the KP. In Sec. III we approximate the partition function
by applying the method of steepest descent in the large-W
limit. In Sec. IV we derive a solution to the KP from the
approximated partition function, and this solution, in turn,
leads to two versions of a statistical-physics-based algorithm
for the KP. In Sec. V we compare the performances (in terms
of runtime and accuracy) of the introduced algorithms to the
performances of other standard solutions to the KP for so-
called “difficult instances” of the KP [16]. We note that the
introduced algorithms do not perform better than standard KP
algorithms, but in Sec. VI we show that the statistical physics
formalism of the algorithms makes clear relationships among
the standard ones. In particular, we show that the large-W
limit of the dynamic programming solution to the KP yields a
greedy algorithm in much the same way that the large N limit
of the factorial of a number yields Stirling’s approximation
of said number. We conclude by discussing how higher-order
corrections could be computed for the introduced algorithms
and how the demonstrated connection between dynamic pro-
gramming and greedy algorithms could be extended to other
combinatorial optimization problems.

II. PARTITION FUNCTION
FOR THE KNAPSACK PROBLEM

The partition function is a foundational theoretical con-
struct in statistical physics [17], and if one can calculate it for a
system, then all observables for the system can be calculated
in turn. Calculating useful forms of the partition function is
difficult for all but the simplest systems [18], but there are
often approaches to approximating an answer. For the 0-1 KP

considered in the body of the paper, we will derive an expres-
sion for the partition function and then use the expression to
compute the solution to the KP. Making the calculated results
computationally useful will require approximations discussed
in the next section, but in this section, the results will be
exact.

We start by representing the KP as a statistical-physics
system at a dimensionless temperature T . This temperature
is a nonphysical hyperparameter that ultimately be taken to
zero to ensure that an optimal solution is found. For the KP,
this optimal solution corresponds to the highest-value subset
of objects that is consistent with the constraint.

To write the partition function for the KP, we need to place
the objective function and the constraint in Eq. (1) in a sum
over all possible states x. The possible states consist of all 2N

possible vectors x = (x1, x2, . . . , xN ) where x j ∈ {0, 1} and
for which only some vectors satisfy the weight constraint.
To impose the constraint, we introduce the Heaviside step
function �( j) defined as

�( j) ≡
{

1 for j � 0
0 otherwise , (2)

where j is an integer. With Eq. (2) and taking the negative of
the total value v · x to be the energy of the system, the partition
function for the KP is then

ZN (βv, w,W ) =
∑

x

�(W − w · x) exp(βv · x), (3)

where β ≡ 1/T , and the summation over x is defined as

∑
x

≡
N∏

j=1

1∑
x j=0

[Summation for 0-1 problem]. (4)

On the left-hand side of Eq. (3), the subscript N represents the
total number of items under consideration for the KP. With the
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partition function Eq. (3), standard statistical physics formal-
ism tells us that the probability that a particular collection of
objects x occurs in the system is

PN (x̄) = 1

ZN
�(W − w · x) exp(βv · x). (5)

Using this probability to express the average occupancy for
object k yields

〈xk〉 =
∑

x

xkPN (x) = ∂

∂ (βvk )
ln ZN (βv, w,W ). (6)

As an average occupancy for this 0-1 problem, Eq. (6) also
represents the probability that object k is included in the
collection. For example, if 〈xk〉 > 1/2, then more than half of
the Boltzmann-weighted microstates in the system have object
k in the knapsack at a temperature T . Therefore, sampling
these microstates would give us a greater than 50% chance
of having object k included in the collection.

We can go from an “average occupancy” to an explicit
prediction of occupancy by taking averages to the zero-
temperature limit. For a physical system with a set of
microstates {S} and an energy function −O(S ), defined in
terms of the positive-definite objective function O(S ), the
system partition function (at inverse temperature β) is Z =∑

{S} exp[βO(S )], and the average microstate at this temper-
ature is 〈S〉 ≡ Z−1 ∑

{S} S exp[βO(S )]. If there is a single
microstate S0 that maximizes O(S), then it is easy to show
that

lim
β→∞

〈S〉 = S0. (7)

Interpreting Eq. (7) for the KP, the exact solution to the KP
is found when Eq. (6) is taken to the T → 0 (or equivalently
when β → ∞) limit because as temperature goes to zero,
the microstate that dominates the summation is that which
maximizes v · x consistent with the constraint W � w · x. Ex-
plicitly, the solution vector X has components defined as

X soln
k = lim

β→∞
〈xk〉 = lim

β→∞
∂

∂ (βvk )
ln ZN (βv, w,W ). (8)

In the quest to establish a statistical physics-based KP al-
gorithm, our local goal is to find an expression for the average
occupancy Eq. (6) and to use this expression within the zero-
temperature solution—or low-temperature approximations of
the solution—Eq. (8). But to move forward, we first need to
express the partition function Eq. (3) in a more mathemati-
cally useful form. We do so by moving from a discrete-space
summation to a continuous-space integration.

First, we write the Heaviside step function Eq. (2) in terms
of a contour integral by using the contour integral expression
of the Kronecker delta δ( j, m):

�( j) =
∞∑

m=0

δ( j, m) = 1

2π i

∮
�

dz

z j+1

∞∑
m=0

zm

= 1

2π i

∮
�

dz

z j+1

1

1 − z
, (9)

where, in the final equality, we used the geometric series
identity

∑∞
n=0 zn = 1/(1 − z). The identity is only valid for

|z| < 1, thus applying it constrains the contour � not to extend

more than 1 unit away from the origin. Now, inserting Eq. (9)
into Eq. (3), taking j ≡ W − w · x, and summing over the
states x, we obtain

ZN (βv, w,W ) = 1

2π i

∮
�

dz

zW +1

1

1 − z

N∏
k=1

(1 + zwk eβvk ).

(10)

Eq. (10) is the final form of the KP partition function, and it
ultimately allows us to solve the associated problem. To obtain
this solution, we make explicit one property that will be useful
in subsequent discussions. If we isolate the k = N factor in the
integrand of Eq. (10) and expand this factor as two terms, we
obtain the identity

ZN (βv, w,W ) = Z (N )
N−1(βv, w,W )

+ eβvN Z (N )
N−1(βv, w,W − wN ), (11)

where Z (k)
N−1(βv, w,W ) is the partition function in which the

�th component is eliminated from both v and w, and thus
only N − 1 items are under consideration. This identity could
also have been obtained directly from Eq. (3), and although
Eq. (11) was computed for k = N , the equality applies for
any k.

In statistical physics, computing the partition function
amounts to “solving” the corresponding system, so Eq. (11)
shows that solutions to the KP can be built up recursively in
terms of the solutions to instances with smaller weight limits
and fewer items. We can write the explicit solution to the KP
in terms of this statistical physics representation by applying
Eq. (8) to Eq. (10) and using the identity Eq. (11). We then
find

Xk = 1 − lim
β→∞

Z (k)
N−1(βv, w,W )

ZN (βv, w,W )
, (12)

where Z (k)
N−1(βv, w,W ) is the partition function for which the

kth component is eliminated from both v and w. Eq. (12)
shows that the explicit solution to the KP can be written in
terms of the limit of a ratio of partition functions, and thus
being able to compute the partition function Eq. (10) indeed
leads to a solution to the KP.

In Algorithm 1, we express the solution Eq. (12) and the
partition function recursion Eq. (11) as an algorithm. We
call Algorithm 1 an “Exact Z” algorithm since it is based
on computing an exact partition function, but the algorithm
itself is an approximate solution to the KP. From the form of
Eq. (11) we see that T must be nonzero in order for the parti-
tion function to be finite. However, because the exact solution
Eq. (12) employs a T → 0 limit, any partition-function-based
solution to the KP that uses nonzero T will necessarily be an
approximate solution.

Still, we can use this formalism to find an exact solution to
the KP. We do so by first highlighting a noteworthy aspect of
Algorithm 1: The way the partition function matrix Z[N][W ]
is built up in line 9 is reminiscent of the more traditional
dynamic programming solution to the KP [19] in which
optimal values for the desired instance are built up from
optimal values for subset instances.
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ALGORITHM 1. Exact (Z 	= 0) algorithm.

1. Define w = (w1, w2, . . . , wN ), v = (v1, v2, . . . , vN ), and W .
Select a temperature T satisfying T 
 min{v j}.

2. Define an (N + 1) × (W + 1) matrix Z with elements set by
Z[i][w] := 1 for 0 � i � N and 0 � w � W .

3. Computing Partition Function: Compute Z[N][W ] as
follows:

4. for i in [1, N] :
5. for w in [1,W ] :
6. if wi > w:
7. Z[i][w] := Z[i − 1][w]
8. else:
9. Z[i][w] := Z[i − 1][w] + exp(vi/T )Z[i − 1, w − wi]

10. end
11. Computuing Solution: Set w = W . Let X represent the final

object occupancy for the KP. Define X = (X1, X2, . . . , XN )
where Xj := 0 initially. The values Xj are then updated as
follows:

12. for j in [N, 1] (reverse-order list):
13. if 1 − Z[ j − 1][w]/Z[ j][w] > 1/2:
14. Xj := 1
15. w := w − w j

16. end

To make the connection between the exact partition func-
tion Eq. (10) and the standard dynamic programming KP
solution explicit, we first compute the average total value of
the knapsack, 〈v · x〉N,W , with N items and a weight limit W :

〈v · x〉N,W = 1

ZN (βv, w,W )

∂

∂β
ZN (βv, w,W ). (13)

Eq. (13) is a temperature-dependent quantity, but we know
[from Eq. (7)] that taking the zero-temperature limit of such
a quantity yields the optimal value of the quantity across the
available states. That is, if VN (W ) is the optimal value for our
instance of the KP, then we must have

VN (W ) = lim
β→∞

〈v · x〉N,W . (14)

Now, using Eq. (13) and Eq. (11) in Eq. (14), we find that
the recursive relation Eq. (11) leads (see Appendix A) to an
analogous recursive relation for VN (W ):

VN (W ) =
{

VN−1(W ) for W < wN

max{VN−1(W ), vN + VN−1(W − wN )} for W � wN ,
(15)

Eq. (15) is the standard dynamic programming solution to
the KP [19], and so we have found that the definition of
the KP partition function in Eq. (3) implies the validity
of the recursion relation Eq. (11) which itself implies that the
optimal value of the knapsack (i.e., the average value at zero
temperature) is defined recursively by the standard dynamic
programming solution. In essence, the exact KP partition
function encodes the dynamic programming solution to the
KP.

From this relationship, we see that Eq. (11) and Eq. (15)
provide us with two equivalent ways of formulating solutions
to the KP. We can either recursively compute the partition
function [and then apply Eq. (12)], or we can recursively
compute the optimal value. Both approaches amount to the
dynamic programming solution to the KP.

Standard Dynamic Programming
(Implement Eq. (15) recursively to compute VN (W ))

∼=
Exact Partition Function

(Implement Eq. (11) recursively to compute ZN )

. (16)

We will revisit this relationship in Sec. VI when we consider
an analogous relationship for the greedy algorithm of the KP.

III. APPROXIMATING THE PARTITION FUNCTION

We have seen that we can use Eq. (11) to implement
a dynamic programming solution to compute the partition

function for a given N and W , and then use Eq. (12) to find
the occupancy of object j. However, such a computation is
typically slower than the standard DP approach due to the
computational resources needed to compute the exponential
in Eq. (11) for large arguments [20]. Another approach could
involve computing ZN (βv, w,W ) directly from Eq. (3). How-
ever, this computation would amount to a brute force solution
which requires a summation over all 2N states of the system.
Alternatively, we could try to use Eq. (10) to compute the
partition function, but this calculation, too, would be stymied,
this time by the general numerical intractability of the contour
integral.

These challenges suggest we explore an alternative form
for the KP partition function in order to capture the algo-
rithmic potential of the statistical physics formulation more
fully. This alternative form we find will be based on an
approximation of the contour integral. Towards finding this
approximation, we first write Eq. (10) as

ZN (βv, w,W ) = 1

2π i

∮
�

dz

z
exp FN (z; βv, w,W ), (17)

where we defined

FN (z;βv, w,W )

= −W ln z − ln(1 − z) +
N∑

k=1

ln(1 + zwk eβvk ). (18)
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It is important to note that Eq. (18) is not defined for all z ∈ C;
given the condition that defines Eq. (9), Eq. (18) is also valid
only for |z| < 1.

To approximate Eq. (17), we use the method of steepest
descent [21]. The method states that for a given function fN :
R → R that obeys limN→∞ fN (x) = ∞, we have

IN =
∫

C
dz g(z)e fN (z)

= eiθ1

√
2π

| f ′′
N (z0)| g(z0) e fN (z0 )(1 + εN ), (19)

where g : R → R; εN is an error term; C is a contour in
the complex plane; z0 is defined by f ′

N (z0) = 0; and θ1 is
defined by the constraint 2θ1 + θ2 = π with θ2 itself defined
as the phase of f ′′

N (z0) [specifically through 1
2 f ′′

N (z0) = reiθ2

for r, θ2 ∈ R; see [21] for the sources of these phases].
In order to apply Eq. (19) to Eq. (17), we need to identify

g(z) and f (z). There is some ambiguity in how we make
these identifications, but in general, for these steepest descent
approximations, one subsumes all factors into the exponential
argument aside from the 1/z factor typical of contour inte-
grals. By this convention, we can identify 1/z with g(z) and
FN (z; βv, w,W ) with fN (z) [22].

Since |z| < 1, we find that FN (z; βv, w,W ) goes to ∞
when W → ∞. Thus we can infer that W is a suitable large-
number parameter, and we can apply the steepest descent
approximation [21] to Eq. (17) for the case of W � w j for
all j.

There are two things to note about this limit. First, taking
W � 1 with no constraint on w j is not sufficient for ensuring
that we are in a regime where the steepest descent approxima-
tion applies. An instance satisfying W � 1 could be trivially
created by taking W → W ′ = λW and w j → w′

j = λw j for
λ � 1, but such an instance would be identical to the original
instance defined by W and w j .

Second, taking W � 1 with no corresponding change in∑N
j=1 w j would result in a trivial KP instance. Thus for the

KP to remain nontrivial, the weight vector w must satisfy W <∑N
j=1 w j . When we discuss the performance of algorithms in

Sec. V, we will ensure that the considered KP instances satisfy
this constraint.

Applying the steepest descent approximation to Eq. (17)
for W � w j , we obtain

ZN (βv, w,W ) = 1√
2πz2

0∂
2
z FN (z0)

exp FN (z0; βv, w,W )

× [1 + O(w j/W )], (20)

where z0 is the value of z at which ∂zFN (z; βv, w,W ) = 0.
Note that to obtain Eq. (20), we assumed ∂2

z FN (z0) to be
real and positive, thus giving us θ2 = 0 which in turn implies
θ1 = π/2 and eiθ1/i = 1. Below we verify this assumption.
The error term O(w j/W ) comes from the fact that the error
associated with the approximation is of the order of the inverse
of the large-number parameter [see Eq. (11.33) in [21] for a
full expansion].

In what follows, we will take FN (z) ≡ FN (z; βv, w,W )
where notationally convenient. Using Eq. (18), we find that

the z derivative of FN is

∂zFN (z; βv, w,W ) = −W

z
+ 1

1 − z
+ 1

z

N∑
i=1

wizwi eβvi

1 + zwi eβvi
.

(21)

Therefore, the condition that defines z0 in Eq. (20) is

W = z0

1 − z0
+

N∑
i=1

wiz
wi
0 eβvi

1 + zwi
0 eβvi

. (22)

We can ensure that such a z0 always exists as follows. Taking
the limits of Eq. (21) at the bounds of the domain z ∈ (0, 1),
we have limz→0 ∂zFN (z) = −∞, and limz→1 ∂zFN (z) = +∞
which implies that ∂zFN (z) crosses the axis at some point
between z = 0 and z = 1. Therefore, by the intermediate
value theorem [23] there must exist some z0 ∈ (0, 1) such that
∂zFN (z0) = 0.

Next we check that ∂2
z FN (z0) is real and positive. Differen-

tiating Eq. (21) and setting z = z0 we find

∂2
z FN (z0; βv, w,W )

= 1

z0(1 − z0)2
+ 1

z2
0

N∑
i=1

w2
i zwi

0 eβvi(
1 + zwi

0 eβvi
)2 , (23)

which, for z0 ∈ (0, 1), is a positive real number. Thus, Eq. (20)
is a real quantity, and the z0 determined from Eq. (22) defines
a local minimum for FN (z).

Finally, we show that z0 is unique. Since ∂2
z FN (z) > 0, we

find that ∂zFN (z) is monotonically increasing in the interval
z ∈ (0, 1). Together with the previous intermediate value the-
orem result on the existence of the root, we can conclude that
this root is also unique.

Given that z0 exists and is unique, we can use Eq. (20)
to find a unique approximation to the KP partition function.
Such an approximation is useful because it allows us to study
the statistical physics of the KP without the summation over
the 2N microstates that define the initial form of the partition
function Eq. (3). In particular, with Eq. (6) and Eq. (8), we
know that the solution to the KP can be expressed in terms
of derivatives of this partition function, and consequently, an
approximate solution to the KP can be expressed in terms of
derivatives of the approximate partition function Eq. (20). We
pursue this approximate solution in the next section.

IV. SOLVING THE KNAPSACK PROBLEM

Having obtained the unique z0 determined by the condition
Eq. (22), we can use Eq. (6) and Eq. (20) to find an approx-
imate expression for 〈x�〉 and in turn use this expression to
solve the KP. We first consider non-zero-temperature solutions
to the KP and then show how these solutions lead to a zero-
temperature approach.

A. Nonzero temperature

We seek to use the large-W approximation results Eq. (20)
to explicitly solve the KP. We begin by writing 〈x�〉 in terms
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ALGORITHM 2. Large-W non-zero-temperature algorithm.

1: Define w = (w1, w2, . . . , wN ), v = (v1, v2, . . . , vN ), and W .
Select the system temperature T satisfying T 
 min{v�}, and a
probability threshold pthresh.

2: Compute z0(T ) by using a numerical solver NSolve to evaluate

z0 = NSolve(z; GN (z; v/T, w,W )), (26)

where

GN (z; v/T, w,W ) = −W + z

1 − z
+

N∑
i=1

wi

e−vi/T z−wi + 1
, (27)

at the chosen T .
3: Compute 〈x�〉 from

〈x�〉 = 1

e−v�/T z−w�

0 + 1
. (28)

4: For each � = 1, . . . , N compute X� according to

X� =
{

1 if 〈x�〉 > pthresh,
0 otherwise.

(29)

The vector X = (X1, X2, . . . , XN ) represents the final object
composition.

of FN (z) as

〈x�〉 = ∂

∂ (βv�)
ln ZN (βv, w,W )

= ∂

∂ (βv�)
FN (z; βv, w,W ) + O(w j/W ), (24)

where we ignored derivatives with respect to the prefactors in
the approximation because they are subleading in our large-W
limit. Calculating this quantity from Eq. (18), we obtain

〈x�〉 = zw�

0 eβv�

1 + zw�

0 eβv�
+ O(w j/W ). (25)

Assuming we can find z0 with Eq. (22), we can use Eq. (25)
to determine the average occupancy for the object �. We can
then use all of these approximate results as the basis for a
large-W finite temperature algorithm for the KP. To formulate

the algorithm, we assume that we have a black-box solver that
can obtain the numerical solution to a nonlinear equation (e.g.,
[24,25]). We denote this black-box solver as NSolve, and,
notationally, we write x0 = NSolve(x; F (x)) when x0 is the
solution the algorithm finds to the equation F (x) = 0. As
established in Sec. III, there is only one solution to Eq. (22),
so we do not need to be concerned with multiple roots. The
average in Eq. (25) yields a value between 0 and 1, exclusive,
and so in order to convert the result into an unambiguous
solution we need to introduce a parameter pthresh that defines
how large 〈x�〉 needs to be in order for object � to be included
in the collection. In Algorithm 2, we formulate these ideas as
a sequence of steps that yields an approximate solution to the
KP.

In Fig. 2(b) we show the results of applying this algorithm
to an example instance. As the temperature T of the system
is lowered, the total weight of the included objects predicted
from Eq. (29) approaches the limiting weight and the total
value increases to its optimal value. This is as we should
expect: In statistical physics, as system temperature T is low-
ered, the space of microstates where the system spends most
of its time gets smaller until, at zero temperature, the system
settles into the single lowest-energy microstate presuming
such a microstate exists.

It is worth comparing Algorithm 2 with simulated anneal-
ing, another algorithm extending from statistical physics. In
simulated annealing, a typically discrete state space is ex-
plored by randomly proposing and then rejecting or accepting
state transitions in an energy landscape with gradually deep-
ening valleys [4]. The system temperature, which is lowered
over time, parameterizes the deepening of the valleys, and as
these valleys become more pronounced, the system eventually
settles into one of its local minima. In this way, simulated
annealing allows us to computationally find local optima in
state spaces.

These aspects of simulated annealing have analogs in the
large-W algorithm. In simulated annealing, the objective func-
tion is the negative of the total value of the object collection,
while in Algorithm 2, the objective function is the more
abstract complex potential FN (z). In simulated annealing, the

FIG. 2. Temperature dependence of large-W algorithm: Plots correspond to a KP instance with N = 22 and a W = 400. Exact weights and
values are provided in the code referenced in the data availability statement along with all the functions used to generate the figures. (a) Plot
of Eq. (18) at various temperatures. In the T 	= 0 algorithm, we are “rolling down” the hill represented by FN (z) [Eq. (18)] and into the local
minimum (marked as black circle). As the temperature of the system is lowered, z0 decreases. (b) Calculated value (v · X) and weight (w · X)
as a function of temperature computed from Eq. (29) with pthresh = 0.95. As we lower the temperature, the optimized value increases as does
the associated weight, until we reach the weight limit.
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algorithm takes small random steps in the direction of the
local minimum of the objective function, while in Algorithm
2, solving for z0 amounts to directly going to the minimum
of the corresponding objective function. The two algorithms
have consonant interpretations of how the optimization pro-
ceeds, even though each is searching different state spaces
with different objective functions.

Moreover, the “minimum-seeking” interpretation of Algo-
rithm 2 suggests a connection to a standard approximation
in combinatorial optimization. In finding z0 [the minimum of
FN (z)], we are effectively “rolling down” the potential defined
by FN (z) and settling at its lowest point [see Fig. 2(a)]. In fact,
we could rewrite Algorithm 2 as a gradient descent algorithm
to highlight this “valley rolling” interpretation. Such an in-
terpretation reveals that the algorithm is essentially a “greedy
approach” in z space for finding the minimum of the potential
FN (z). The KP algorithm itself has a greedy solution, so it
is worth asking whether there is any relationship between
the well-known greedy heuristic for the KP and the greedy
optimization of the complex potential FN (z) in z space. Such a
relationship would allow us to explicitly connect the exact dy-
namic programming solution to the KP (shown in Section II to
be derivable from the partition function) to a greedy solution.
We explore this possibility in Sec. VI.

B. Zero temperature

In Fig. 2(b) we saw that the KP solution given by Eq. (28)
became more accurate as the system temperature decreased.
This behavior suggests a question about the initial solution
Eq. (25): Can this solution be taken all the way to T → 0 in
order to obtain the best approximation this formalism can give
for the KP?

To answer this question, we return to the definition of the
KP solution in Eq. (8). This definition shows that we can
go from a temperature-dependent average occupancy to the
solution of the corresponding optimization problem by taking
β → ∞. Writing Eq. (25) in terms of the T → 0 limit (for
notational convenience), we have

X soln
� = lim

T →0

1

e−(v�−γ (T )w� )/T + 1
+ O(w j/W ), (30)

where we defined

γ (T ) ≡ −T ln z0(T ), (31)

and we wrote z0 = z0(T ) to make explicit z0’s dependence on
temperature T . To use Eq. (30) to obtain a viable solution to
the KP, we need to assume that its temperature limit is both
nontrivial and well defined. In other words, we assume that
the result is neither zero nor infinite and is instead an explicit
function of the arguments v�, w� and an implicit function
of the parameters that determine z0(T ). These assumptions
constitute our ansatz for the T → 0 limit of Eq. (30).

The 1/T factor in the argument of the exponential of
Eq. (30) suggests a final form for the T → 0 limit of Eq. (30).
From the definition of the Heaviside step function H (x) with
H (0) = 1/2, we have

H (x) = lim
α→0

1

e−x/α + 1
=

{
1 for x > 0
0 for x < 0 . (32)

Taking the analogous limit in Eq. (30) then gives us

X soln
� = H (v�/w� − γ0) + O(w j/W ), (33)

where we used the identity H (ax) = H (x) for a > 0 and
defined

γ0 ≡ − lim
T →0

T ln z0(T ). (34)

The process for implementing the solution represented by
Eq. (33) is simple, in principle: Given v, w, and W , we use the
constraint Eq. (22) to first determine z0(T ), then determine the
function γ (T ) = −T ln z0(T ), take this function to the T → 0
limit to obtain γ0, and finally [by Eq. (33)], include in our KP
solution all objects whose v�/w� ratio is greater than the value
of γ0.

As a necessary condition, a nonzero γ0 requires z0(T ) to
go to zero as T → 0. We can prove this result for z0(T )
via contradiction. We start with a nontrivial KP where W <∑N

i=1 wi. If we take T → 0 in Eq. (22) and assume that z0 ∈
(0, 1) is nonzero in this T → 0 limit, then we obtain W =
z0/(1 − z0) + ∑N

i=1 wi >
∑N

i=1 wi, which contradicts the ini-
tial nontrivial condition W <

∑N
i=1 wi. Thus the assumption

of a finite z0 in the T → 0 limit is invalid for the T → 0
validity of Eq. (22).

As a sanity check for this formalism, we will apply it to the
trivial “degenerate” KP instance where all N objects have the
same weight w0 and the same value v0. Such an instance does
not have a unique solution, and we expect the derived solution
Eq. (33) to reflect this. For the degenerate instance, Eq. (22)
simplifies to

W = z0

1 − z0
+ Nw0

e−v0/T z−w0
0 + 1

. (35)

In order to solve the KP with Eq. (33), we need to determine
γ0. The quantity γ0 is defined in terms of the zero-temperature
limit of z0(T ) and z0(T ) goes to 0 as T goes to zero. Also,
the approximation assumes W � w j � 1. With these two
facts, Eq. (35) can be approximated by dropping the first term
(which is O(z0)) on the right-hand side. By dropping this term,
Eq. (35) becomes soluble for this degenerate instance, and we
find

z0(T ) = W

Nw0 − W
e−v0/w0T + O

(
z2

0

)
. (36)

Computing γ (T ) from Eq. (31) and Eq. (36) together and then
taking the limit of the result as T → 0, we find γ0 = v0/w0,
which by Eq. (33) yields the solution

Xi = 1/2 [Degenerate solution], (37)

for all i. We expect Xi to be either 1 or 0 to indicate that object
i is included or excluded, respectively, from the collection that
solves the KP. A value of 1/2 is therefore ambiguous and such
an ambiguity implies that there are multiple viable solutions
to the KP for each object: Some solutions where the object is
included in the collection and other solutions where the object
is excluded from the collection. This structure of solutions
is true for the degenerate KP since all objects are equivalent
and can be switched out of the solution. Therefore the solu-
tion Eq. (33) reproduces what we expect for the degenerate
KP [26].

044151-7



MOBOLAJI WILLIAMS PHYSICAL REVIEW E 109, 044151 (2024)

This degenerate instance was special in that we were
able to find an analytical expression for z0(T ) for low tem-
perature. However, for nontrivial instances, determining γ0

from the limit Eq. (34) is difficult due to the need to find
low-temperature solutions to Eq. (22), a task which is made
difficult due to overflow errors from the exponential function.
So instead of determining γ0 directly from the T → 0 limit of
z0(T ), we consider a simpler approach based on the T → 0
limit of the entire expression Eq. (22). Using Eq. (33) and the
fact that limT →0 z0(T ) = 0, we find that the T → 0 limit of
Eq. (22) is

W =
N∑

j=1

w jH (v j/w j − γ0). (38)

Eq. (38) represents a consistency equation for γ0, and given v,
w, and W , we can solve this equation for γ0 [27]. Eq. (38) is
not always soluble in this way, and, in such cases, γ0 would
be chosen so as to yield the smallest error in the expression.
For example, applying Eq. (38) to the degenerate instance,
yields W/Nw0 = H (v0/w0 − γ0) which yields the solution
γ0 = v0/w0 only if W/Nw0 = 1/2. However, regardless of the
value of W/Nw0, the constraint of 0 < W/Nw0 < 1 implies
that the γ0 = v0/w0 solution is more consistent with this con-
straint than other values of γ0.

In Algorithm 3, we formulate a solution to the KP based on
Eq. (38). The algorithm is similar to Algorithm 2 except that
rather than seeking the value of z at the potential minimum,
we are seeking γ0 explicitly defined in Eq. (31) and implicitly
defined in Eq. (38). From its use in Eq. (38), the quantity γ0

is imbued with a simple conceptual interpretation. With H
constrained to be either 1 or 0 (i.e., no ambiguous solutions),
it is apparent that Eq. (38) represents a KP solution in which
all items are included in the knapsack if their value-to-weight
ratios exceed γ0. Thus, γ0 is the minimum value-weight ratio
that determines knapsack occupancy.

ALGORITHM 3. Large-W zero-temperature algorithm.

1: Define w = (w1, w2, . . . , wN ), v = (v1, v2, . . . , vN ), and W .
2: Approximate γ0 by using a numerical solver NSolve to evaluate

γ0 = NSolve(γ ; L(γ ; v, w,W )), (39)

where

L(γ ; v, w,W ) = W −
N∑

j=1

w jH (v j/w j − γ ). (40)

3. For each � = 1, . . . , N compute X� according to

X� = H (v�/w� − γ0), (41)

where H (x) is the Heaviside step function with H (0) = 1/2.
The vector X = (X1, X2, . . . , XN ) represents the final object
composition. For the case of the ambiguous solution Xj = 1/2,
we take Xj → 0 as an item placement decision.

In the next section, we will take all three introduced algo-
rithms and compare them with some standard algorithms for
the KP. The goal of this comparison is to evaluate the claim
made in Fig. 1 and to see whether a statistical-physics-based

approach to the KP yields solutions with higher accuracy for
larger instances while taking comparatively less time than
exact algorithms.

In this work, we have only considered the 0-1 KP, but
there are many variations to this classic case. In Appendix B
we consider three variations (the bounded, unbounded, and
continuous KPs) and show how the statistical physics partition
function can be computed for each one. For the bounded
and unbounded problems, we also show how this partition
function can lead to large-W algorithms for the KP.

V. RUNTIME AND ACCURACY COMPARISONS

In the introduction, we argued that the large-number limit
of the KP should (as the large-number parameter increased)
yield solutions that are progressively more accurate while
taking relatively less time than an exact algorithm based on
brute search or dynamic programming. In this section, we
explore whether this is the case by comparing the introduced
algorithms to standard KP algorithms.

Three algorithms have been introduced in this work: The
“exact Z algorithm” (Algorithm 1) based on a calculation
of the KP partition function through the recursive defini-
tion Eq. (11); the “large-W non-zero-temperature algorithm”
(Algorithm 2) based on the sigmoidal solution for 〈x�〉 in
Eq. (25); the “large-W zero-temperature algorithm” (Al-
gorithm 3) based on the Heaviside step function solution
Eq. (33). Comparing the runtime and accuracy performances
of these algorithms would make evident the relative benefits
of the higher accuracy of the exact algorithm versus the faster
runtimes of the approximate algorithms in addition to the
effect of the T → 0 limit on the accuracy of the approximate
algorithm.

Three other standard KP algorithms were used as baseline
comparisons. The dynamic programming (DP) algorithm for
the KP that has time complexity O(NW ); the greedy algorithm
which arranges objects as a decreasing sequence in vi/wi

and then includes objects in the collection according to this
sequence until the weight limit is reached [28]; the simulated
annealing algorithm in which the KP is represented as a
thermal system whose temperature is gradually lowered until
the system settles into the microstate of highest total value
consistent with the constraint [29].

The dynamic programming algorithm for the KP runs in
polynomial time but it is also exact. This is because KP is in
the subclass of NP-hard problems that are known as “weakly
NP-hard” since there is an exact algorithm (i.e., the dynamic
programming algorithm for the KP) that runs in polynomial
time in the number of inputs (i.e., N) and the magnitude of
associated data (i.e., W ). However, the KP does not have a
polynomial runtime in the number of inputs alone, and so it
is still considered “NP-hard.” Formally, it is said that the KP
runs in pseudo-polynomial time [30].

All six algorithms were applied to four different types
of “difficult” KP instances taken from [16]. In [16] it was
noted that the easiest instances of the KP consist of those for
which item values are uncorrelated with item weights since
such instances very likely contain “obviously included” items
with large values and small weights. A follow-up study [31]
further clarified that difficult KP instances occur when there
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FIG. 3. Runtime and accuracy comparisons: In (a), (b), and (c), we show the results for the “circle instances,” and in (d), (e), and (f), we
show the results for the “spanner instances.” Panels (a) and (d) depict the runtimes as a function of N ; (b) and (e) depict the accuracy of the
algorithms as a function of N ; (c) and (f) depict the runtime and accuracy for the instance with N = 2048 items. For the temperature-dependent
algorithms, we set T = 1.0. The large-W algorithms can achieve high accuracies for the strongly correlated circle instance but fail for the highly
degenerate spanner instance. The source for the code used to generate these figures is given in the data availability statement.

is a strong correlation between the values and weights or
when there are degeneracies in the values and weights of the
list of items. In this section we show the results of applying
the six algorithms to the “circle” and “spanner” instances,
instances that exhibit strong correlations or degeneracies. The
results for two other difficult instances from [16]—the “profit-
ceiling instance” and the “multiple strongly correlated items
instance”—are discussed in Appendix C.

The circle and spanner instances are constructed as
follows:

(i) Circle instances: Values as a function of the weights
form the arc of an ellipse. Taking the weights w to be
uniformly distributed in the range [1, R], for a free integer pa-
rameter R, the values satisfy v = d

√
4R2 − (w − 2R)2 where

d is also a free parameter. In [16], it is noted that particularly
difficult instances come from choosing d = 2/3. The value of
R was set to 100.

(ii) Spanner instances: All items are multiples of a small
set of items termed the “spanner set.” To create the instance,
we first select ν weights w j in the interval [1, R] for a free
integer parameter R and then define the corresponding values
as v j = w j + R/10. The N items of the instance are found by
randomly selecting an item from the ν items in the spanner set
and randomly selecting an integer a from the interval [1, m]
for a free integer parameter m. The new item then has the
value and weight (av j, aw j ), and this is repeated until N items
are selected. In what follows, we set ν = 2 and m = 10, in

accordance with the construction in [16]. The value of R was
set to 10.

To compare the set of six algorithms, we considered in-
stances with N = 2k objects for k = 3, 4, . . . , 12. For each
N , integer weights were randomly selected, and values were
calculated according to the instance definitions given above.
The weight limit was set to

∑N
j=1 w j/2, which meant that an

increase in N led to an increase in W , with a mostly linear scal-
ing. Having both W and N increase together was important
for maintaining the existence of nontrivial solutions: In order
to see the effects of large W on the accuracies of solutions,
we were primarily interested in considering instances with
increasing W . However, if W increased without an increase
in N , then, given a fixed range of variation for the weights
w j , the instance would eventually admit the trivial solution in
which all items are included.

The runtime and accuracy results of applying the algo-
rithms to the two difficult instances are presented in Fig. 3.
Figures 3(a), 3(b), and 3(c) display the results for the circle
instance, and Figs. 3(d), 3(e), and 3(f) display the results for
the spanner instance. Figures 3(a) and 3(d) show the runtime
of each algorithm as a function of the total number of items.
Figures 3(b) and 3(e) show the accuracy of each algorithm
as a function of the total number of items. Figures 3(c) and
3(f) show the runtime and accuracy for each algorithm for
the case of N = 2048 items. Since the dynamic programming
solution is exact, we defined the accuracy of an algorithm
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as 1 − |V − Vexact|/Vexact where Vexact was the optimal value
given by dynamic programming, and V was the optimal value
given by the particular algorithm.

The first noteworthy result is the behavior of the exact
Z algorithm. Figures 3(c) and Fig. 3(f) show that the ex-
act Z algorithm (yellow hexagon) is generally a fixed factor
slower than the standard dynamic programming algorithm
(blue square) for both types of instances, but has the same
time scaling with N and achieves similar accuracy [Fig. 3(b)
and Fig. 3(e)]. This reflects the fact that calculating the exact
partition function for the KP is tantamount to implementing
the standard dynamic programming solution to the KP, and
thus both algorithms should proceed in O(NW ) time with
more time required for the exact Z algorithm in order to
precisely compute its exponential factor.

The annealing algorithm (orange triangle) performs faster
than the dynamic programming and exact Z algorithms but
more slowly than both large-W algorithms as N increases.
This time scaling reflects the fact that the state space an-
nealing must explore grows as 2N for increasing N and thus
takes longer to search for an optimal solution. The anneal-
ing algorithm is also less accurate than the algorithms for
the strongly correlated (but not degenerate) circle instance
but achieves much better accuracy for the ratio-degenerate
spanner instance. This likely reflects the fact that degenerate
instances often allow for multiple solutions that an annealing
algorithm can converge to, but less degenerate instances re-
quire a more extensive (and thus more error-prone) search of
the state space.

For the large-W algorithms, we see that the non-zero-
temperature algorithm (grey pentagon) is faster than the
dynamic programming solution for values of N � 102. True
to the logic of Fig. 1, the faster speed of the non-zero-
temperature algorithm stems from the its basis in solving
an equation, a process which generally has a lower order
scaling with N than exact algorithmic solutions for the KP.
The zero-temperature algorithm (red-plus) is even faster than
the non-zero-temperature version because while the latter
requires time-consuming high-precision solvers to compute
exponential terms at low temperature, the former’s constraint
equation (Eq. (40)) has simple algebraic factors.

Considering the two large-W algorithm’s relative accura-
cies, it is apparent that the non-zero-temperature algorithm is
less accurate than the zero-temperature algorithm. We noted
in Fig. 2 that the non-zero-temperature algorithm (Algorithm
2) becomes more accurate as T is lowered, and thus nonzero
values of T will generally yield solutions that are not yet
at their optimal possible values. Thus as the T defining the
non-zero-temperature algorithm is lowered, we expect the
algorithm’s predicted optimal value to converge to that of the
zero-temperature algorithm (Algorithm 3), provided there is a
means to solve Eq. (27) for progressively lower T .

Although both large-W algorithms achieve high accura-
cies for the circle instance (which has strong correlations
between values and weights), neither algorithm achieves high
accuracies for the spanner instance (in which the value-to-
weight ratio is highly degenerate across items). The reason
for the poor performance stems from the properties of the
spanner instance. For the chosen construction (with ν = 2
and m = 10), there are only two possible values of the ratio

v j/w j . The zero-temperature algorithm (Algorithm 3) is blind
to differences in values and weights where the ratio is the same
and accepts (or rejects) all items that fall above (or below) a
given ratio. When there are two distinct ratios, the algorithm
has only three choices of how to build up a solution: accept
all items with both ratios, accept all items of only one ratio,
and reject all items of the other, or reject all items with both
ratios. Therefore, the algorithm does not exhibit the selectivity
required to build up an optimal solution. This constrained set
of choices leads to poor accuracy for the zero-temperature
algorithm. Moreover, for the given spanner instance, there are
only 20 possible unique choices for (v j,w j ), meaning that
a system with N ∼ 1024 items is highly degenerate with an
average of 50 copies of each type of item. We recall from
Eq. (37) that the zero-temperature algorithm yields ambigu-
ous predictions for highly degenerate instances, so we would
not expect it to perform well for the spanner instance. The
non-zero-temperature version of the algorithm represents a
softer (i.e., continuous) version of the acceptance criteria that
governs the zero-temperature algorithm and thus shares the
zero-temperature algorithm’s limitations.

The greedy algorithm is also dependent on the ratio v j/w j ,
but it is able to avoid the degeneracy problems of the span-
ner instance and achieve consistently accurate results because
the algorithm adds items more selectively. In particular, the
algorithm can continue to add items to the solution as long
as doing so does not violate the weight constraint. More
generally, for both of the instance types, the greedy algorithm
performs well for large values of N , eventually (for the largest
N) predicting values close to the optimal total value in much
less runtime. This might appear strange to those familiar with
how greedy algorithms are discussed in KPs. The greedy al-
gorithm is typically touted as a fast but inaccurate way to find
an optimal collection of objects because it myopically looks
at the next best choice rather than considering more holistic
object combinations. However, given the large-W limit, the
KP instances satisfy W � w j for all j, and thus including
suboptimal items generally does not preclude the inclusion of
other items as needed. In other words, in the limit of W � w j ,
the instances act as “semicontinuous KP,” for which we expect
the greedy algorithm to perform well [32].

Comparing the performances of the three introduced algo-
rithms to those of the standard algorithms for the KP, we see
that the large-W algorithms generally do not perform better
along the given metrics than existing algorithms. Such a result
might strike one as an indication of wasted effort. The sta-
tistical physics formalism has resulted in algorithms that are
more complicated but yield no better performance than pedes-
trian KP algorithms. However, in Sec. II, we noted that the
exact Z algorithm was related to the dynamic programming
solution to the KP. In the current section, given the definition
of the standard KP greedy algorithm, we noted that it made
use of value-to-weight ratios in a way similar to the way
these ratios are used in the zero-temperature algorithm. This
relation, in turn, suggests that the zero-temperature algorithm
can be related to a greedy algorithm. The fact that both the
exact Z and zero-temperature algorithms stem from a common
statistical-physics starting point suggests that the established
and conjectured counterparts of these algorithms (i.e., dy-
namic programming and the greedy algorithm, respectively)

044151-10



LARGE-W LIMIT OF THE KNAPSACK PROBLEM PHYSICAL REVIEW E 109, 044151 (2024)

could be similarly related. Making this relationship concrete
would allow us to use statistical physics to connect distinct
algorithmic spaces of combinatorial optimization problems. It
is this connection, rather than the performances of the intro-
duced algorithms, that gives the statistical physics perspective
its value. We outline this connection more explicitly in the
next section.

VI. GREEDY ALGORITHM AS A LIMIT
OF DYNAMIC PROGRAMMING

In this section, we show how the statistical physics for-
malism allows us to relate two approaches to solving the KP,
ultimately revealing that the recursive DP solution leads to
a myopic greedy solution when the problem is taken to the
W � w j limit.

First, we review the fundamental question asked by the
zero-temperature and standard greedy algorithms. The large-
W zero-temperature algorithm (Algorithm 3) asks “What
is the minimum value-to-weight ratio [i.e., γ0 defined in
Eq. (34)] above which one can accept all the satisfying items
and obtain a total weight that satisfies the weight limit?” The
standard KP greedy algorithm asks “Which items are included
in the knapsack if one arranges all items in decreasing order
of their value-to-weight ratios and accepts items in sequence
until the knapsack has a total weight that satisfies the weight
limit?”

In the greedy algorithm, the ordering and selective ac-
ceptance of items yields a minimum ratio for v�/w� above
which all objects are included knapsack. Conversely, the
zero-temperature algorithm seeks to compute a minimum
acceptance ratio as a first step and to then use this ratio
as a rule for including items. In essence, the greedy algo-
rithm follows an “ordering and fill-up procedure,” while the
zero-temperature algorithm follows a “criteria procedure” for
deciding which items are included in the knapsack, but both
algorithms make use of a minimum value-to-weight ratio.

From here, we can ask whether the minimum ratio cal-
culated through the greedy algorithm is the same as the
minimum ratio of the zero-temperature algorithm. To answer
this question, we first define the minimum ratio for the greedy
algorithm. Following the standard greedy algorithm for the
KP [32], say that the items in the knapsack are sorted so that
their value-to-weight ratios are in nonincreasing order:

v1

w1
� v2

w2
� · · · vN

wN
. (42)

Items are then added to the knapsack until the weight limit
is violated. We define α as the index of the item where this
violation first occurs:

α = min

⎧⎨
⎩k :

k∑
j=1

w j > W

⎫⎬
⎭. (43)

By Eq. (42), all items j satisfying v j/w j > vα/wα are in-
cluded in the greedy KP solution [33], and thus vα/wα is the
desired minimum ratio that can be inferred from this solu-
tion. For the zero-temperature algorithm, the solution Eq. (41)
indicates that γ0 is the minimum value-to-weight ratio that
determines item inclusion for the algorithm. This γ0 value is

found by selecting the γ at which the equation

L(γ ; v, w,W ) = W −
N∑

j=1

w jH (v j/w j − γ0) (44)

is zero or minimized for L � 0. From the minimum ratios of
the greedy algorithm and the zero-temperature algorithm, we
can define the “normalized ratio difference” as

norm. ratio diff. ≡ |γ0 − vα/wα|
γ0

, (45)

which defines the percent difference by which the greedy
minimum ratio differs from the large-W zero-temperature
minimum ratio. Computing the values of this difference for
the circle and spanner instance, we find (the code for calcula-
tions is given in the data availability statement)

norm. ratio diff. < 10−15, (46)

suggesting that the two minimum-ratio values are numerically
identical.

Thus, the standard greedy algorithm and the zero-
temperature algorithm are implementing the same basic
procedures under different framings. Still, whether that fram-
ing concerns ordering items and filling up the knapsack or
is one based on criteria, both the standard greedy algorithm
and the zero-temperature algorithms reflect the type of local
decision-making that typifies a greedy algorithm. Both algo-
rithms seek to optimize a variable (i.e., total value) by making
choices that do not involve a full exploration of the state space.
Thus we can interpret the zero-temperature algorithm as a
greedy algorithm:

Greedy Algorithm
(Fill knapsack up to min v�/w� limit)

∼=
Large-W Zero-Temperature Algorithm

(Compute min v�/w� limit, then fill knapsack)

. (47)

Insofar as greedy algorithms go, the zero-temperature al-
gorithm is a fairly unsophisticated one, sharing the basic
characteristics of the standard greedy solution (namely a
value-to-weight ratio and the “fill to the weight-limit” pro-
cedure) without any of that algorithm’s discernment. This
difference is reflected in the two algorithm’s relative perfor-
mances in Fig. 3 and is explained by the fact that while the
zero-temperature solution only includes items that are above
a certain value-to-weight ratio, the standard greedy solution
can accept items with ratios below this special ratio if doing
so does not violate the weight limit.

Having concluded that the zero-temperature algorithm (Al-
gorithm 3) is a greedy algorithm, it appears that we have
done a lot of work just to end up in essentially the same
(and arguably a worse) place. If the large-W limit of the
partition function for the KP yields a greedy algorithm, and
this algorithm is less consistently accurate than the standard
greedy algorithm, then what value does our algorithm provide
to computer scientists who are interested in finding better
ways to solve real problems? Moreover, what value does this
formalism provide to physicists who have already studied the
statistical mechanics of this system as a representation of a
disordered system [13,14]? Here we argue that the value in
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FIG. 4. Relationship between dynamic programming and greedy
solutions to the KP: For the statistical physics representation of the
KP, taking the T → 0 limit of the exact partition function yields
the standard dynamic programming solution, and taking the T → 0
limit of the large-W limit of the partition function yields a greedy
solution (Algorithm 3). The parameter T modulates how far we are
from the optimal solution (i.e., lower T corresponds to more opti-
mal solutions). Thus, both Algorithm 1 and Algorithm 2 represent,
respectively, dynamic and greedy solutions to the KP. In this way,
the large-W limit of the dynamic programming solution is a greedy
solution.

both directions exists in the path we have taken to seemingly
end up in the same place we began [34].

Given the partition function identity in Eq. (11) and the
prior discussion on how the zero-temperature algorithm is a
greedy algorithm, the statistical physics formalism suggests
that there is a relationship between dynamic programming and
greedy algorithms, at least for the KP. In combinatorial op-
timization, dynamic programming and greedy approaches to
solving problems are, by definition, very different. In dynamic
programming, a problem is solved exactly by recursively
referring to stored solutions of subproblems. In greedy algo-
rithms, a (typically approximate) solution is built by selecting
whatever choice is best given an initial state. After deriving the
identity Eq. (11), we showed that the exact partition function
Eq. (10) yielded the dynamic programming solution to the KP,
and above, we explained how the zero-temperature large-W
algorithm was a greedy algorithm. From the fact that we can
move from the exact partition function to the approximate
partition function by taking the large-W limit, in a sense, ap-
plying a large-W approximation to the dynamic programming
approach to the KP yields a greedy algorithm. We repre-
sent the relationships between these algorithms and limits in
Fig. 4.

The merit of establishing this relationship can be under-
stood through an analogy. One could imagine knowing that
the quantity IN = ln(N!) can be calculated recursively as IN =
ln N + IN−1 and also knowing that IN can be approximated for
large N as IN  N ln N − N , but not knowing how the approx-
imation relates to the exact result or why the approximation is

a good one. To make clear the relationship between the exact
and approximate forms of IN , we could use the formalism of
the Gamma function plus Laplace’s method (or alternatively
just the Euler-Maclaurin formula) to derive the latter from the
former and, in turn, obtain a systematic way to obtain higher-
order corrections to the approximation. As an added benefit,
the derivation would serve as an example for computations
of similar combinatorial factors, thus providing many other
connections between exact and approximate combinatorial
expressions.

The statistical physics model for the KP achieves some-
thing similar for the dynamic programming and greedy
solutions to the KP. It shows how the two algorithms are
related and serves as an example of how similar ideas could
be applied to find relationships between other algorithms. This
mapping only arises from the statistical physics framing of the
system, and the representation of the algorithms themselves
is specific to the KP, but its existence gives us a more com-
prehensive understanding of how algorithms for the KP relate
to one another and motivates further exploration into whether
this relationship generalizes for other similarly formulated
combinatorial optimization problems.

VII. DISCUSSION

Starting from Fig. 1, we began this work by suggesting
that the properties of analytical statistical physics made the
formalism amenable to solving large N combinatorial opti-
mization problems with high accuracy and in less time than
exact solutions. From Fig. 3, this suggestion appears to have
supporting evidence in some cases, but it is also clear that al-
ready well-known algorithms outperform the ones introduced
in this work.

We explored three related algorithms originating from the
statistical physics formulation of the KP. The first algorithm
(Algorithm 1) followed from a recursive identity for the
exact partition function of the system and reproduced the
standard dynamic programming solution for the KP. Next,
by approximating the exact partition function in the large-W
limit, we obtained an approximate solution to the KP, which
resulted in another algorithm (Algorithm 2) that was termed
the “non-zero-temperature algorithm.” Finally, by taking this
latter solution to the T → 0 limit, we obtained the “zero-
temperature algorithm” (Algorithm 3).

Comparing the accuracies and runtimes of these algorithms
to the standard dynamic programming algorithm, the standard
greedy algorithm, and simulated annealing, we found that the
introduced algorithms did not consistently outperform exist-
ing ones for “difficult instances” (Fig. 3). Algorithm 1 had
accuracy results similar to those of the standard DP algo-
rithm but was a fixed factor slower. Algorithm 2 generally
performed worse than Algorithm 3, and while Algorithm 3
did perform better as N increased (with not as much of a
runtime increase as that for the exact algorithm), it did not
perform well for degenerate KP instances, and the standard
greedy algorithm always had better results.

Since well-known algorithms perform better in runtime
and accuracy than the introduced algorithms, it may seem that
our algorithms have little value. However, the path leading
to the approximate algorithms suggests that the value of the
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statistical physics approach exists outside of what initially
motivated it. In particular, the correspondence between the
statistical physics algorithms and the more well-known algo-
rithms tells us something about the relationships between the
algorithms themselves.

Dynamic programming and greedy solutions to a combi-
natorial optimization problem are typically seen as distinct
and separate solution approaches. Greedy solutions rely on
making locally optimal choices in order to optimize an ob-
jective function, while dynamic programming solutions build
towards an exact solution by solving nested subproblems.
Although these two approaches are distinct in conception and
execution, the results of this work (summarized in Fig. 4)
reveal that when the KP is formulated as a statistical physics
system, the exact partition function yields the standard dy-
namic programming solution, and the large-W limit of that
partition function yields a greedy solution to the KP. Thus,
through the statistical physics representation of the KP, we
see that taking the large-W limit of a dynamic programming
solution to the KP yields a greedy solution (Algorithm 3).
Framed differently, the exact partition function for the KP
is a non-zero-temperature continuation of the dynamic pro-
gramming solution to the KP, and the approximate partition
function is similarly a non-zero-temperature continuation of a
greedy solution.

That the large-W approximation to the KP partition func-
tion yields a greedy algorithm is consistent with intuition. The
large-W approximation is based on the method of steepest
descent, which approximates the partition function by the
local minimum of a potential function. The search for this
local minimum can be represented as a directed step-by-step
movement towards the minimum of the potential, essentially
as a greedy search. So the large-W approximation already
contains a greedy solution within its structure. What is in-
teresting here is that the greedy approach to maximizing the
continuous potential is paralleled by a greedy approach for
the final discrete KP solution and that the former extends
from an exact partition function that encodes the dynamic
programming solution to the problem.

The implications of this connection extend beyond the
problem considered here. The KP is an NP-complete problem
[35], which means that its polynomial-time solution leads
to the polynomial-time solution of all other NP problems.
Therefore, a reframing of the properties of various solutions
to the KP can help us better understand the properties for NP
problems in general. There is no guarantee that all NP prob-
lems have both dynamic programming and greedy solutions,
nor can all be formulated as single constraint problems, but
for those that do, a natural question is how these results can
be generalized to apply to such problems.

There are a few investigations that could naturally follow
this work: Understanding error estimates of the solution, find-
ing higher-order corrections to the approximate solutions, and
applying the formalism to other optimization problems.

The algorithms give us solutions for the KP in the form
of the vector X, but they do not give us a sense of how the
approximated maximum v · X differs from the true maximum.
For the exact Z algorithm, such an error estimate could follow
from a T 
 1 expansion of the partition function and the
argument of the limit in Eq. (12). For the large-W algorithms,

this error estimate could likely be found by a more careful
accounting of the higher-order terms in the steepest descent
approximation., in turn, more accurate approximate solutions
that These higher-order terms could also serve as the foun-
dation for improved versions of Algorithm 2 and 3. In the
standard steepest descent approximation, the potential of the
exponential integrand is approximated by a quadratic func-
tion. It is this function that yields the approximate solution
Eq. (25) from which the final solutions Eq. (28) and Eq. (41)
were derived. By retaining higher-order terms in the integrand
expansion, we could possibly obtain more accurate partition
functions and in turn more accurate approximate solutions
which do not have the “all-or-nothing” deficiencies of the
existing large-W algorithms.

Following the formalism that led to Algorithms 1, 2, and 3,
it is clear that the ability to relate various limiting forms of the
algorithms to each other follows from the representation of
the KP partition function as the integral Eq. (10). The integral
representation of the KP allowed us to apply the steepest
descent approximation in the large-W limit, which ultimately
connected the dynamic programming and the greedy solutions
to the problem. This integral representation followed from
representing the KP weight constraint as a contour integral.
Thus, it would be straightforward to extend this approach
to other combinatorial optimization problems with similar
types of constraints. In particular, if a problem is restricted
by an inequality constraint (leading to a Heaviside function)
or an equality constraint (leading to a Kronecker delta func-
tion), then much of the prior formalism could be transferred
wholesale, and thus repeated application of the formalism to
different optimization problems could lead to many corre-
spondence pairs between various dynamic programming and
greedy solutions to problems. Then for this class of problems,
a general theorem could be established that states that the
dynamic programming solutions to all combinatorial opti-
mization problems of a certain type yield a greedy solution in
a certain limit. One necessary limitation to such extensions is
that in order for an integral approximation to be possible, the
number of constraints cannot scale linearly with N [36], and
thus problems like the Traveling Salesperson Problem would
be resistant to this approach.

In all, this work represents an alternative way to frame
the value of statistical physics to combinatorial optimization.
For many decades, computational statistical physics algo-
rithms have been used to stochastically search for solutions
to combinatorial optimization problems. And combinatorial
optimization problems themselves have been used to study the
properties of rugged landscapes in statistical physics systems.
In contrast to these previous approaches, the main value of
the current work is not a new highly performant algorithm
or a new context in which to apply the replica method but
a potentially new way to understand the relationships be-
tween solutions to combinatorial optimization problems with
constraints. Greedy algorithms are known ways to approxi-
mate the solutions to combinatorial optimization problems.
These approaches are understood as distinct from dynamic
programming which are grounded in recursive solutions to a
problem. Here we have shown how each can be represented
as a branch from the common starting point of the statistical
physics formulation of the KP.
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This work was completed in Jellyfish. The numerical work
was done with a 2.2 GHz 6-Core Intel Core i7 processor using
Python 3.9 to computationally implement all the algorithms.
Code used to generate all figures is found in the repository at
[37].
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APPENDIX A: DYNAMIC PROGRAMMING
KP FROM PARTITION FUNCTION

In this section, we show that the standard dynamic pro-
gramming solution to the KP is contained within the exact KP

partition function. We recall that the KP partition function

ZN (βv, w,W ) =
∑

x

�(W − w · x) exp(βv · x) (A1)

has the associated identity

ZN (βv, w,W ) = Z (N )
N−1(βv, w,W )

+ eβvN Z (N )
N−1(βv, w,W − wN ), (A2)

where Z (N )
N−1(βv, w,W ) is the partition function in which the

N th component is eliminated from both v and w, and thus only
N − 1 items are under consideration.

Using Eq. (A1), the average value 〈V 〉N,W ≡ 〈v · x〉N,W can
be written in terms of the β derivative of the partition function:

〈V 〉N,W = 1

ZN (βv, w,W )

∂

∂β
ZN (βv, w,W ), (A3)

where subscripts N,W signify that the average is defined for
a weight limit W with N items under consideration. Differ-
entiating Eq. (A2) with respect to β, dividing the result by
ZN (βv, w,W ), and using Eq. (A3) then yields

〈V 〉N,W = ∂βZ (N )
N−1(βv, w,W ) + eβvN (vN + ∂β )Z (N )

N−1(βv, w,W − wN )

Z (N )
N−1(βv, w,W ) + eβvN Z (N )

N−1(βv, w,W − wN )
. (A4)

We know that given the definition of 〈V 〉N,W as a sta-
tistical physics average and VN (W ) as the maximum total
value of the corresponding optimization problem, we have the
equality

VN (W ) = lim
β→∞

〈V 〉N,W . (A5)

So, taking the limit of Eq. (A4) as β → ∞, we obtain

VN (W ) = lim
β→∞

〈V 〉N−1,W + λN,W (vN + 〈V 〉N−1,W −wN )

1 + λN,W
,

(A6)

where we used Eq. (A3) in the final equality, and we defined

λN,W ≡ eβvN Z (N )
N−1(βv, w,W − wN )

Z (N )
N−1(βv, w,W )

. (A7)

In order to compute the right-hand side of Eq. (A6), we
first note that there are three possible cases in which the
limit can be evaluated: the case where W < wN ; the case
where W � wN with the numerator of Eq. (A7) dominating
the denominator for β → ∞; and the case where W � wN

with the denominator of Eq. (A7) dominating the numerator
for β → ∞.

For the case where W < wN , the second term in Eq. (A2)
(or, equivalently, the second term in the numerator or denom-
inator of Eq. (A6)) vanishes because the partition function ZN

cannot be defined for negative weight. Thus, we find λN,W = 0
for W < wN , and applying the definition Eq. (A5) to the right-
hand side of Eq. (A6), we find

VN (W ) = VN−1(W ) [for W < wN ]. (A8)

For the next two cases defined by W � w, we recall that
the partition function is a Boltzmann weighted sum over states
where the argument of the Boltzmann weight is proportional
to the total value of the collection for the corresponding state.
When we take β → ∞, the differences in the total values
between states become more pronounced so that the parti-
tion function effectively becomes defined by its maximum
total-value state. Specifically, in this limit, a general partition
function Z becomes Z = eβOmax + · · · where Omax is the max-
imum total value and “· · · ” stands for subleading terms in this
limit.

Thus whether the numerator of Eq. (A7) dominates the
denominator in the β → ∞ limit is entirely dependent on
the relative values of the maximum total values associated
with each partition function: If the maximum total value for
Z (N )

N−1(βv, w,W ) is greater than that for eβvN Z (N )
N−1(βv, w,W −

wN ) then limβ→∞ λN,W = 0. Alternatively, if the maxi-
mum total value for Z (N )

N−1(βv, w,W ) is less than that for
eβvN Z (N )

N−1(βv, w,W − wN ) then limβ→∞ λN,W = ∞. For the
partition function Z (N )

N−1(βv, w,W ), the maximum total value
is by definition VN−1(W ), and for the partition function
eβvN Z (N )

N−1(βv, w,W − wN ), the maximum total value is vN +
VN−1(W − wN ) where we have vN as a first term since the
factor eβvN adds a value element of vN to each state.

Having determined the maximum total values associated
with the numerator and denominator of Eq. (A7), and given
that the relative values of these maxima determine whether
λN,W → 0 or → ∞ in the β → ∞ limit, we find that Eq. (A6)
(for W � wN ) becomes

VN (W ) =VN−1(W ) [for VN−1(W ) > vN +VN−1(W − wN )],

(A9)
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and the opposite case (still with W � wN ) yields

VN (W ) = vN + VN−1(W − wN ) [for VN−1(W ) < vN + VN−1(W − wN )]. (A10)

Reviewing the cases Eq. (A8), Eq. (A9), and Eq. (A10), we see that together they produce the solution

VN (W ) =
{

VN−1(W ) for W < wN

max{VN−1(W ), vN + VN−1(W − wN )} for W � wN ,
(A11)

where Vj (Q) is the maximum total value of the knapsack with the first j items included and a weight limit Q. Eq. (A11) is
the standard dynamic programming solution to the KP and we can thus conclude that the KP partition function reproduces the
standard dynamic programming solution to the KP.

APPENDIX B: VARIATIONS

In this Appendix, we discuss the various generalizations of the 0-1 KP: The bounded, unbounded, and continuous [1] KPs.
All generalizations keep the essential problem format of Eq. (1) except each changes the state space available to each object and
consequently also changes the associated sum over states. This change in summation alters the solubility of the final partition
function and our ability to approximate it. We find that although we can develop algorithms analogous to those found in the main
text for the bounded and unbounded KPs, we can only write down the partition function for the continuous KP.

1. Bounded knapsack problem

Here we sketch the large-W algorithm for the bounded version of the KP. We focus on writing the results since the relevant
derivations are largely identical to those for the 0-1 problem.

In the bounded KP, we allow each object i to appear a maximum of Ci times in the final collection. We collectively represent
these maximum constraints through the vector C = (C1,C2, . . . ,CN ). For the statistical-physics representation of the problem,
this change amounts to replacing the summation Eq. (4) with

∑
x

≡
N∏

j=1

Cj∑
x j=0

[Summation for “multiple copies” problem], (B1)

where xi denotes the number of times object i is included in the final collection. Following a derivation similar to that in Sec. II,
we find that the partition function for this system is

ZN (βv, w, C,W ) = 1

2π i

∮
�

dz

zW +1

1

1 − z

N∏
k=1

1 − z(Ck+1)wk e(Ck+1)βvk

1 − zwk eβvk
. (B2)

For this partition function, we can derive a recursive relation analogous to Eq. (11) and ultimately connect Eq. (B2) to the
dynamic programming solution to the bounded KP. Noting that

1 − z(CN +1)wN e(CN +1)βvN

1 − zwN eβvN
= 1 + zwN eβvN

1 − zCN wW eCN βvN

1 − zwN eβvN
, (B3)

we find that Eq. (B2) implies

ZN (βv, w, C,W ) = Z (N )
N−1(βv, w, C,W ) + eβvN ZN

(
βv, w, C(N ),W − wN

)
, (B4)

where Z (k)
N−1(βv, w, C,W ) is the partition function Eq. (B2) where the kth component is eliminated from all the vectors and

thus only N − 1 components are under consideration, and we defined C(k) ≡ (C1, . . . ,Ck − 1, . . . ,CN ). Letting Vk (W, C) be the
optimal value for the bounded KP instance where only the first k � N items are used, we can show (using arguments similar to
those Appendix A) that Eq. (B4) implies

VN (W, C) =
{

VN−1(W, C) for W < wN

max{VN−1(W, C), vN + VN (W − wN , C(N ) )} for W � wN
, (B5)

which defines the dynamic programming algorithm for the bounded KP.
With Eq. (B2), we can also apply the method of steepest descent (as in Sec. III) to approximate this partition function and

derive the expressions needed to formulate algorithms akin to those in Sec. IV.
For these algorithms, we primarily need alternative expressions for Eq. (27), Eq. (28), and Eq. (41). Deriving an expression

analogous to Eq. (27) is straightforward; the calculation is identical to that for the 0-1 problem. We find

GN (z; βv, w, C,W ) = −W + z0

1 − z0
−

N∑
i=1

wi

1 − e−vi/T z−wi
0

+
N∑

i=1

(Ci + 1)wi

1 − e−(Ci+1)vi/T z−(Ci+1)wi
0

. (B6)
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Similarly, the expression for the analog of Eq. (28) can
be found by differentiating the potential term inferred from
Eq. (B2). From this differentiation we find

〈x�〉 = C� + 1

1 − e−(C�+1)v�/T z−(C�+1)w�

0

− 1

1 − e−v�/T z−w�

0

+ O(w j/W ). (B7)

From here, our formulation of the algorithm can proceed in
one of two directions to obtain X�: We can take the T → 0
limit of Eq. (B7); or we can consider Eq. (B7) with a finite
threshold that allows us to determine the assignment of ob-
jects.

Following the first path, we consider the function

fB(x; α) = B + 1

1 − e−(B+1)x/α
− 1

1 − e−x/α
. (B8)

Combining each term under a common denominator and ap-
plying L’Hôpital’s rule twice yields fB(0; α) = B/2. Taking
α → 0, we then find limα→0 fB(x; α) = BH (x) where H (x) is
the Heaviside step function that is defined at zero by H (0) =
1/2. Therefore, we see that the T → 0 limit of Eq. (B7) is

X� = lim
T →0

〈x�〉 = C�H (v� − γ0w�) + O(w j/W ), (B9)

where γ0 = limT →0 γ (T ), γ (T ) ≡ T ln z0(T ), and z0(T ) is
the solution obtained from the constraint condition Eq. (B6)
being set to zero. Eq. (B9) allows us to formulate the T = 0
algorithm for the bounded KP.

For the second path, we have to use a threshold that can
convert 〈x�〉 to an integer. We introduce this threshold so
that we can round 〈x�〉 to the nearest integer based on how
stringent we want to be about the rounding. To this end, we
will define a pthresh ∈ (0, 1) and define the solution X� as

X� =
{

C� if 〈x�〉 > C� pthresh

0 otherwise.
. (B10)

In Eq. (B10) we have forced the occupancy for object �

to either be zero or its maximum number of instances in
the collection. We chose this “all or nothing” decision crite-
rion in order to have a solution similar to that for Eq. (29).
Such a choice also well corresponds with the T = 0 solution
Eq. (B9).

2. Unbounded knapsack problem

Here we sketch the large-W algorithm for the unbounded
version of the KP. We again focus on writing the results since
the relevant derivations are largely identical to those for the
0-1 problem.

In the unbounded KP, we allow each object i to appear
a countably infinite number of times in the final collection.
For our statistical-physics representation of the problem this
change amounts to replacing the summation Eq. (4) with

∑
x

≡
N∏

j=1

∞∑
x j=0

[Summation for “infinite” problem],

(B11)

where xi denotes the number of times object i is included in
the final collection. If we were to follow a derivation similar

to that in Sec. II, we would reach the expression

ZN,∞(βv, w,W ) = 1

2π i

∮
�

dz

zW +1

1

1 − z

N∏
k=1

∞∑
xk=0

(zwk eβvk )xk .

(B12)

This expression contains an infinite series, and for such series
there are conditions on whether the final result is finite. In this
case, in order for Eq. (B12) to be finite we require

|z| < e−βvk/wk for k = 1, 2, . . . , N . (B13)

We can ensure this condition by choosing a contour
�R whose z values satisfy z ∈ R where R is the
circle in the complex plane with radius equal to
min(e−βv1/w1 , e−βv2/w2 , . . . , e−βvN /wN ).

Constraining our contour in this way, we find that the
partition function is

ZN,∞(βv, w,W ) = 1

2π i

∮
�R

dz

z
exp FN,∞(z; βv, w,W ),

(B14)

where we defined

FN,∞(z; βv, w,W )

≡ −W ln z − ln(1 − z) −
N∑

k=1

ln(1 − zwk eβvk ). (B15)

With Eq. (B14), we can apply the method of steepest de-
scent as in Sec. III to approximate this partition function and
derive the necessary expressions to formulate algorithms akin
to those for the 0-1 problem in Sec. IV. Namely, we can derive
expressions analogous to Eq. (28) and Eq. (29), or Eq. (B6)
and Eq. (B7)

However, the z value at which FN,∞ is minimized is not
always included within the region of contours for which the
infinite series that takes us from Eq. (B12) to Eq. (B14) is
valid. In other words, the z that minimizes Eq. (B15) can
violate Eq. (B13) and thus exist off the contour �R. In such
a case, we cannot sensibly evaluate the integrand of the parti-
tion function at this minimum potential value. Therefore, the
method of steepest descent cannot always be applied to the
partition function in the unbounded case.

We can rectify this by noting that no nontrivial KP is
truly unbounded: If each item has a weight, there must be a
maximum number of each item that can be included in the
knapsack. Thus, we can convert the unbounded KP into a
bounded KP where the bound is defined by

C� ≡ �W/w��. (B16)

Thus, the large-W algorithms for the unbounded case are iden-
tical to the algorithms sketched in Appendix B 1 except that
the components of C, rather than being a set of independently
defined problem parameters, are computed from the weights
and weight limit through Eq. (B16).

3. Continuous knapsack problem

Unlike the bounded and unbounded KPs, the continuous
KP has a continuous space of states. Consequently, the pre-
vious discrete delta and Heaviside function methods do not
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FIG. 5. Runtime and accuracy comparisons: In (a), (b), and (c), we show the results for the “profit-ceiling instances,” and in (d), (e), and
(f), we show the results for the “multiple strongly correlated items instances.” Panels (a) and (d) depict the runtimes as a function of N ; (b) and
(e) depict the accuracy of the algorithms as a function of N ; (c) and (f) depict the runtime and accuracy for the instance with N = 2048 items.
For the temperature-dependent algorithms we set T = 1.0. The zero-temperature algorithm has increasing performance with increasing N as
is consistent with Fig. 1. The source of the code and results used to generate these figures is given in the data availability statement.

apply, and we cannot reach an expression to which we can
apply the method of steepest descent. Therefore, it seems
that we cannot obtain a statistical-physics-based algorithm for
this case. Still, it is possible to achieve the limited victory of
writing a partition function for this problem and we do so here.

In the continuous KP, xi can take on any real number
between 0 and 1 inclusive, and each xi represents the amount
of object i we include in the final collection. We take x =
(x1, x2, . . . , xN ) to represent the amounts of each object in the
collection, and the total weight and total value of the objects to
be w · x and v · x, respectively, where w = (w1,w2, . . . ,wN )
and v = (v1, v2, . . . , vN ) are the corresponding weight and
value vectors.

Generalizing our previous discrete-space analysis to this
continuous-space case amounts to a change from a discrete
sum to a continuous integration. The partition function for this
continuous case is

Zcont
N (βv, w,W ) =

∫ 1

0
dN x �(W − w · x) exp(βv · x),

(B17)

where

∫ 1

0
dN x ≡

∫ 1

0
dx1

∫ 1

0
dx2 . . .

∫ 1

0
dxN (B18)

is the integration over the state space and where

�(x) =
{

1 if x � 0
0 otherwise (B19)

is the Heaviside step function with a continuous argument.
With such a continuous argument, the step function has the
integral representation

�(x) = 1

2π i
lim

ε→0+

∫ ∞

−∞
dk

eikx

k − iε
, (B20)

which can be affirmed by transforming the real-space integral
in k into a closed contour integral in the upper-half of the
complex plane. Inserting this expression into Eq. (B17), we
obtain

Zcont
N (βv, w,W )

=
∫ 1

0
dN x

1

2π i
lim

ε→0+

∫ ∞

−∞
dk

eik(W −w·x)+βv·x

k − iε

= 1

2π i
lim

ε→0+

∫ ∞

−∞
dk

eikW

k − iε

∫ 1

0
dN x ex·(βv−ikw)

= 1

2π i
lim

ε→0+

∫ ∞

−∞
dk

eikW

k − iε

N∏
j=1

∫ 1

0
dx j ex j (βv j−ikw j ),

(B21)
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ultimately yielding the partition function

Zcont
N (βv, w,W )

= 1

2π i
lim

ε→0+

∫ ∞

−∞
dk

eikW

k − iε

N∏
j=1

e(βv j−ikw j ) − 1

βv j − ikw j
. (B22)

Since we are no longer integrating over a contour in the
complex plane, applying a large-W approximation scheme to
Eq. (B22) would require a slightly different formalism from
that presented in this paper. Interestingly, fast approximation
schemes are not needed for the continuous KP as it can
be solved exactly via an O(N log N ) greedy algorithm [28]
and thus what would typically be the fastest “approximation”
method actually yields the exact solution.

APPENDIX C: RUNTIME AND ACCURACY RESULTS
FOR ADDITIONAL INSTANCES

We consider the runtime and accuracy results for the two
other special instances introduced in [16]: The “profit-ceiling
instance” and the “multiple strongly correlated items” in-
stance.

(i) Profit-ceiling instances: Values are multiples of a given
integer parameter d . The instance is generated by randomly
(and uniformly) selecting weights w in the interval [1, R],
for a free integer parameter R, and then setting the values to
p j = d�w j/d�. [16] noted that particularly difficult instances
appeared by choosing d = 3. The value of R was set to 100.

(ii) Multiple strongly correlated items instances: Values
are related to weights through v = w + ki where ki for i =
1, 2 for the case of two strongly correlated instances. Specif-
ically, the instances are generated as follows: The weights of
N items are randomly distributed in [1, R]. If the weight w j

is divisible by a chosen d , we set the value v j = w j + k1,
otherwise we set it to v j = w j + k2.

In accordance with [16], we set d = 6, k1 = 3R/10, and
k2 = 2R/10. The value of R was set to 100.

The results of applying the three introduced algorithms and
the three standard algorithms to these instances are shown
in in Fig. 5. The results are similar to those in Fig. 3, ex-
cept since neither the “multistrong” or the “profit-ceiling”
instances exhibit high degeneracies in their value-to-weight
ratios, we find that the zero-temperature algorithm performs
better than it did for the “spanner” instance. For both types
of instances, the standard greedy algorithm achieves highly
accurate results as N increases (due to the W � w j limit),
and the zero-temperature algorithm improves as N increases
but remains bounded above by the standard greedy algorithm.
The non-zero-temperature algorithm fails to achieve accurate
results for the profit-ceiling instance, but maintains an ac-
curacy above 90% for the multiple-strongly correlated items
instance. Figures 5(c) and 5(f) show the proximity in time
and accuracy space between the zero-temperature algorithm
and the standard greedy algorithm which further motivates
identifying the former as a kind of greedy algorithm. In all,
these results affirm those in the text and provide additional
instances where the introduced algorithms do not perform
better in runtime or accuracy than their standard counterparts.
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