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Ordered chains (such as chains of amino acids) are ubiquitous in biological cells, and these chains perform
specific functions contingent on the sequence of their components. Using the existence and general properties
of such sequences as a theoretical motivation, we study the statistical physics of systems whose state space is
defined by the possible permutations of an ordered list, i.e., the symmetric group, and whose energy is a function
of how certain permutations deviate from some chosen correct ordering. Such a nonfactorizable state space is
quite different from the state spaces typically considered in statistical physics systems and consequently has
novel behavior in systems with interacting and even noninteracting Hamiltonians. Various parameter choices
of a mean-field model reveal the system to contain five different physical regimes defined by two transition
temperatures, a triple point, and a quadruple point. Finally, we conclude by discussing how the general analysis
can be extended to state spaces with more complex combinatorial properties and to other standard questions of
statistical mechanics models.
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I. INTRODUCTION

Chains of amino acids are important components of
biological cells, and for such chains the specific ordering of the
amino acids is often so fundamental to the resulting function
and stability of the folded chain that if major deviations from
the correct ordering were to occur, the final chain could fail to
perform its requisite function within the cell, proving fatal to
the organism.

More specifically, we see the relevance of correct ordering
in the study of protein structure, which is often divided into the
protein folding and protein design problem. While the protein
folding problem concerns finding the three-dimensional struc-
ture associated with a given amino acid sequence, the protein
design problem (also termed the inverse-folding problem; see
Fig. 1) concerns finding the correct amino acid sequence
associated with a given protein structure.

An aspect of one solution to the protein design problem
is to maximize the energy difference between the low-energy
folded native structure and the higher energy misfolded or
denatured structures. In doing so, one takes native structure as
fixed and then determines the sequence yielding the minimum
energy, under the assumption (termed the “fixed amino acid
composition” assumption) that only certain quantities of amino
acids appear in the chain [2]. In this resolution (specifically
termed heteropolymer models [3,4]) the correct amino acid
sequence is found by implementing a Monte Carlo (MC)
algorithm in sequence space given a certain fixed amino acid
composition. This entails assuming the number of various
types of amino acids does not change, and distinct states in
sequence space are permutations of one another. For example,
for a polypeptide chain with N residues, rather than searching
over the entire sequence space (of size 20N ), one searches
over a space of sequences (of size N !/n1!n2! . . . n20!) which
are defined by a fixed number of each amino acid.

This aspect of the protein design problem alerts one to a
gap in the statistical mechanics literature. Namely, there do
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not seem to be any simple and analytically soluble statistical
mechanics models where the space of states is defined by
permutations of a list of components.

We can take steps toward constructing such a model by
considering reasonable general properties it should have. If we
assume there was a specific sequence of components which de-
fined the lowest energy sequence and was thermodynamically
stable in the model, then deviations from this sequence would
be less stable. Because of the role sequences of molecules
play in biological systems, it is worth asking what features
we expect such sequences to have from the perspective of
modeling in statistical mechanics.

In Sec. II we introduce the model and compute an exact
partition function which displays what we term “quasi”
-phase transitions—a transition in which the sequence of
lowest energy becomes entropically disfavored above a certain
temperature. In Sec. III, we extend the previous model by
adding a quadratic mean-field interaction term and show that
the resulting system displays two transition temperatures, a
triple point, and a quadruple point. In Sec. IV we discuss
various ways we can extend this model in theoretical or more
phenomenological directions.

II. SYSTEM AND PARTITION FUNCTION

Our larger goal is to study equilibrium thermodynamics for
a system defined by permutations of a set of N components
where each unique permutation is defined by a specific energy.
In general, we should consider the case where the set of N

components consists of L types of components for which
if nk is the number of repeated components of type k, then∑L

k=1 nk = N . For simplicity, however, we will take nk = 1
for all k so that each component is of a unique type and L = N .

To study the equilibrium thermodynamics of such a system
with a fixed N at a fixed temperature T , we need to compute
its partition function. For example, for a sequence with N

components (with no components repeated), there are N !
microstates the system can occupy, and assuming we label
each state k = 1, . . . ,N! − 1,N ! and associate an energy εk
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FIG. 1. Folding vs design (or inverse folding) problems. The
protein folding problem is concerned with determining the three-
dimensional structure produced by a particular sequence of amino
acids. The protein design problem (which motivates the current work)
is concerned with finding the sequence(s) of amino acids, which
yields a given three-dimensional polypeptide structure. A number of
approaches to the design problem are given in [1].

with each state, then the partition function would be

Z =
N!∑
k=1

e−βεk , (1)

where εk for each state k could be reasoned from a more
precise microscopic theory of how the components interact
with one another. Phenomenologically, Eq. (1) would be the
most precise way to construct a model to study the equilibrium
properties of permutations, but because it bears no clear
mathematical structure, it is unenlightening from a theoretical
perspective.

Instead we will postulate a less precise, but theoretically
more interesting model. For most ordered chains in biological
cells, there is a single sequence of components which is the
“correct” sequence for a particular macrostructure. Deviations
from this correct sequence are often disfavored because they
form less stable macrostructures or they fail to perform the
original function of the “correct” sequence. With the general
properties of such sequences in mind, we will abstractly
represent our system as consisting of N sites which are filled
with particular coordinate values denoted by ωk . That is, we
have an arbitrary but fixed coordinate vector �ω expressed in
component form as

�ω = (ω1, . . . ,ωN ). (2)

We will take the collection of components {ωk} as intrinsic
to our system and thus take the state space of our system to
be the set of all the vectors whose ordering of components
can be obtained by permuting the components of �ω, i.e., all
permutations of ω1, . . . ,ωN . We represent an arbitrary state in
this state space as �θ = (θ1, . . . ,θN ), where the θk are drawn
without repeat from {ωk}. Formally, we would say our space
of states is isomorphic to the symmetric group on �ω [5]. We
will thus denote our state space as

Sym(ω) := Set of All Permutations of (ω1, . . . ,ωN ) (3)

and then an arbitrary state �θ is just an element of this set.
As a first formulation of the model, we will take �θ0 = �ω

(the correct sequence) to represent the zero energy state in
the system, and for each component θi of an arbitrary vector
�θ which differs from the corresponding component ωi in �ω,

there is an energy cost of λi > 0. The Hamiltonian is then

HN ({θi}) =
N∑

i=1

λi Iθi �=ωi
, (4)

where θi and ωi are components of vectors �θ and �ω,
respectively, and I is defined by

IA ≡
{

1 if A is true
0 if A is false

(5)

We note that although we label our general state as �θ =
(θ1, . . . ,θN ), the components θ1, . . . ,θN can only take on
mutually exclusive values from the set {ωk}.

We want to explore the equilibrium thermodynamics of
a system with a Hamiltonian of Eq. (4). This amounts to
calculating the partition function

ZN ({βλi}) =
∑

�θ ∈ Sym(ω)

exp

(
−β

N∑
i=1

λi Iθi �=ωi

)
, (6)

where Sym(ω) is again the set of all permutations of the
components of (ω1, . . . ,ωN ). To find a closed-form expression
for the partition function, we group terms in Eq. (6) according
to the number of ways to completely reorder j components in
�ω while keeping the remaining components fixed. Each such
reordering (i.e., each value of j ) is associated with a sum over
products of e−βλi terms with j factors of e−βλi (for various i)
in each term. The total partition function is a sum of all such
reorderings for all js from 0 to N . As can be seen from a direct
expansion of Eq. (6), we have

ZN ({βλi}) =
N∑

j=0

dj �j (e−βλ1 , . . . ,e−βλN ) (7)

where dj , termed the number of derangements of a list of j [6],
is the number of ways to completely reorder a list of j elements.
The quantity �j (x1, . . . ,xN ), termed the j th elementary
symmetric polynomial on n [7], is the sum of all ways to
multiply j elements out of the N term set {x1, . . . ,xN }. For
example, �2(x1,x2,x3) = x1x2 + x2x3 + x3x1. By definition

�k(x1, . . . ,xN ) = 1

k!

[
dk

dqk

N∏
i=1

(1 + q xi)

]
q=0

. (8)

By the definition of the incomplete � function as �(x,α) =∫ ∞
α

dt tx−1e−t and its relation to derangements (i.e., dj =
�(j + 1, − 1)/e, see [8]), we then find

ZN ({βλi}) = e−1
∫ ∞

−1
dt e−t

N∑
j=0

t j �j (e−βλ1 , . . . ,e−βλN )

=
∫ ∞

0
ds e−s

N∏

=1

[1 + (s − 1)e−βλ
 ], (9)

which is the desired closed-form expression for the partition
function of this system.
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With Eq. (9), the problem of abstractly studying a thermal
system of permutations with Hamiltonian Eq. (4) is, from the
perspective of equilibrium statistical mechanics, now com-
plete. However, there are still some physical and theoretical
results which can be teased from this formalism. Specifically,
we can ask whether this system exhibits phase transitions. To
answer this question, it would prove more analytically tractable
to take λi = λ0 for all i. With this condition, we employ the
identity

�j (

N elements︷ ︸︸ ︷
e−βλ0 , . . . ,e−βλ0 ) =

(
N

j

)
e−jβλ0 , (10)

and our partition function Eq. (7) simplifies to

ZN (βλ0) =
N∑

j=0

(
N

j

)
dj e

−jβλ0 (11)

=
∫ ∞

0
ds e−s[1 + (s − 1)e−βλ0 ]N, (12)

where we transformed our Hamiltonian as HN ({θi}) →
H(j ) = λ0j , with j defined as

j ≡
N∑

i=1

Iθi �=ωi
, (13)

the number of components of �θ which are not equal to the
corresponding component in �ω. We call j the number of
incorrect components of �θ , and if j = N we say �θ is completely
disordered. For future reference we define the coefficient of
e−βλ0j in Eq. (11) as gN (j ) so that

gN (j ) =
(

N

j

)
dj , (14)

and the partition function can be written as

ZN (βλ0) =
N∑

j=0

gN (j )e−jβλ0 . (15)

The quantity gN (j ) is the number of ways to reorder a list of
N elements so that j elements are no longer in their original
position. This combinatorial definition of gN (j ) will prove
useful when we explore the phase behavior of more complex
models of permutations.

From the form of Eq. (11), it is clear that, physically, its
associated Hamiltonian is not realistic as it places distinct
permutations (which in any true physical system most likely
have quite different energy properties) in the same degenerate
energy state. Still, from a theoretical perspective, the simplicity
of this model makes it a suitable starting point for studying the
general properties of systems of permutations.

Phaselike behavior of “noninteracting” system

We can investigate the phaselike behavior of the system
defined by the Hamiltonian Eq. (4) (for constant λi across i)
by applying the method of steepest descent [9] to Eq. (12) in the
N � 1 limit. Performing the steepest descent approximation,
solving for the critical value of s and resubstituting it into the

result, we find the approximate free energy of the system is

βF = − ln ZN (βλ0)

	 Nβλ0 − (eβλ0 − N − 1) + F0(N ), (16)

where F0(N ) 	 N ln N is a βλ0 independent term. Noting that
〈j 〉 = −∂ ln ZN (βλ0)/∂(βλ0) = ∂F/∂λ0, we find the average
number of incorrect components satisfies the following equa-
tion of state:

〈j 〉 	 N − eβλ0 . (17)

By Eq. (13), we can infer that 〈j 〉 must be greater than or
equal to 0. However, the right-hand side of Eq. (17) exhibits no
such explicit constraint. Thus we can infer there is a phaselike
transition in our system at the temperature

kBTc = λ0

ln N
. (18)

Below this temperature, we must have 〈j 〉 	 0 and thus the
“correct permutation” has the lowest free energy and is ther-
modynamically favored; above this temperature, 〈j 〉 > 0 and
the system is in a disordered phase where the previous lowest
energy “correct permutation” is energetically disfavored.

Interestingly, this transition arises from the naively nonin-
teracting Hamiltonian

HN ({θi}) = λ0

N∑
i=1

Iθi �=ωi
. (19)

We say “naively noninteracting” because Eq. (19) consists
of a sum over linear functions of a single index i and thus
does not suggest any coupling between terms of differing
index. However, statistical mechanics tells us that the energy
of a system is not the only thing which determines the
thermodynamic behavior of a system. Indeed, we have to
consider entropic contributions as well, and in this system
the entropy (as it is a function of j ) can drive thermodynamic
behavior. In other words, although the Hamiltonian is depicted
as noninteracting and can set-theoretically be represented as

Hsystem = H1 ⊕ H2 ⊕ · · · ⊕ HN, (20)

our system really exhibits interactions between components
because our total space of states S cannot be factorized:

Ssystem �= S1 ⊗ S2 ⊗ . . . ⊗ SN . (21)

Thus the “noninteracting” system exhibits a transition at
Eq. (18) due to the coupled nature of the state space. As
discussed in the subsequent section, we term this transition
a “quasi-phase transition” because it does not bear all of the
standard properties we expect in phase transitions.

Not a true phase transition

We claim the system does not exhibit true phase transition
behavior because many of these results are not consistent with
the traditional thermodynamic definition of phase transitions.
For one, phase transitions are associated with divergences in
the derivatives of the free energy, but there is no divergence in
the free energy associated with the partition function Eq. (12)
for possible parameter values. Also, the result Eq. (17) only
naively makes 〈j 〉’s temperature dependence near 〈j 〉 = 0

042126-3



MOBOLAJI WILLIAMS PHYSICAL REVIEW E 95, 042126 (2017)

FIG. 2. Free energy for “noninteracting model.” For λ0 > 0, the
Landau free energy of the system as a function of j , the number
of incorrect components in �θ , is always convex with a single
global minimum. Because j � 0, the j < 0 domain of each plot
(dashed section) is inaccessible. For sufficiently low temperatures,
the minimum is at j = 0, but as we increase the temperature beyond
Eq. (18), the free energy curve moves to the right (but retains its
functional form) and the new minimum is at a j > 0 value. Actual
plots of F (j ) for j < 0 require us to replace the combinatorial term(
N

j

)
dj with its corresponding � function expression.

appear nondifferentiable. Apparently, since Eq. (17) requires
that 〈j 〉 = 0 for T < Tc, we have that ∂〈j 〉/∂β goes from
0 to eβcλ0 at βc = 1/kBTc. However, Eq. (17) arises from
the steepest descent approximation, and the nonapproximated
partition function Eq. (12) and its derivatives are actually
differentiable over their entire domain.

Finally, with Eq. (11) we can define a Landau free energy
F (j ) for this system according to Z = ∑

j e−βF (j ), and what
we may ordinarily label as a phase transition (i.e., going from
〈j 〉 = 0 to 〈j 〉 �= 0) arises not from changes in the functional
form of the Landau free energy, as we see in real phase
transitions, but from changes in the excluded region of the
Landau free energy (see Fig. 2). Because the functional form
of the free energy remains the same, we observe no true phase
transition.

Alternatively, a heuristic argument for the nonexistence of
phase transitions in our permutation model is mathematically
very similar to the Landau argument [10] for the nonexistence
of transitions in 1d Ising models. For our permutation system
with N lattice sites, the state of zero energy and zero entropy
consists of every site being occupied by its correct component.
To increase the energy of this system, we can choose j sites to
contain incorrect components, thus giving us an energy Hj =
λ0j . The number of ways we can choose these j components
is given by Eq. (14). Thus, upon introducing j �= 0 incorrect
components, the change in the Landau free energy of our
system is

�F (j ) = λ0j − kBT ln

[(
N

j

)
dj

]
	 j (λ0 − kBT ln N ),

(22)

where we took these results in the 1 � j � N limit and used
dj 	 j !/e. In the thermodynamic (N → ∞) limit, we find
that �F (j ) → −∞, meaning there is no nonzero T at which
the entropic contribution becomes subdominant to the energy.
Thus the system exhibits no phase transition.

III. PARTITION FUNCTION FOR INTERACTING MODEL

When we first considered a model of thermal permutations,
we began with a Hamiltonian where sites did not interact with
one another, and each had a site-dependent energy cost for
being incorrectly occupied:

H({θi}) =
∑

i

λi Iθi �=ωi
. (23)

More generally, we can consider Hamiltonians with an
arbitrary number of multiple-site interaction terms. Such a
Hamiltonian could be written as

H({θi}) =
∑

i

λi Iθi �=ωi
+ 1

2

∑
i,j

μij Iθi �=ωi
Iθi �=ωi

+ · · · . (24)

The first term in Eq. (24) associates an energy cost of λi with
incorrectly occupying the component at position i. The second
term models interactions between sites where the correct (or
incorrect) occupation of a single site determines the energy
of another. The exact values of λi and μij could be chosen to
ensure the “correct” state (θi = ωi for all i) is nondegenerate
as in the noninteracting model. The ellipsis represents higher
order interactions in this framework. Hamiltonians such as
Eq. (24) should be more physically relevant, as they would
correspond to systems where the energy cost for deviating
from the lowest energy permutation is not simply linear but
could be represented as a tensor-valued fitting function.

We can make progress in studying the thermodynamics
of more general Hamiltonians like Eq. (24) by first only
considering first- and second-order interaction terms and
taking the interactions to be constants: λi = λ1 for all i;
μij = λ2/N for all i,j . The factor of 1/N is chosen so that
the second term matches the extensive scaling of the first term.
The partition function for such parameter selections is then

ZN (β; λ1,λ2) =
∑

�θ ∈ Sym(ω)

exp

⎛
⎝−βλ1

N∑
i=1

Iθi �=ωi
−

βλ2

2N

N∑
i,j=1

Iθi �=ωi
Iθj �=ωj

⎞
⎠, (25)

where λ1 and λ2 are interaction parameters with units of
energy. We can also write this partition function in the Eq. (13)
basis as

ZN (β; λ1,λ2) =
N∑

j=0

gN (j )e−βE(j ), (26)

where gN (j ) is defined in Eq. (14) and

E(j ) = λ1j + λ2

2N
j 2 (27)

is the energy function for the system.

A. Calculating order parameter

Our goal is to analyze the “quasi” -phase behavior of
this system in a way analogous to our analysis for the
noninteracting system. To do so we begin with the Landau
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free energy function

FN (j,β) = λ1j + λ2

2N
j 2 − 1

β
ln gN (j ). (28)

Alternative starting points for this derivation are presented
in Appendix A. Our system is constitutively discrete, so it
is not precisely correct to discuss our free energy in the
language of analysis, but given our expression for Eq. (14)
we can map this system to a continuous one which bears
the same thermodynamic properties and for which analysis is
appropriate. Specifically, if we take j to be continuous and use
the identity �(x + 1) = x!, we can write

gN (j ) = �(N + 1)

�(j + 1)�(N − j + 1)

�(j + 1, − 1)

e
. (29)

With the approximation �(j + 1, − 1) 	 �(j + 1) and the
substitution Eq. (29), Eq. (28) then becomes

fN (j,β) = λ1j + λ2

2N
j 2 + 1

β
ln �(N − j + 1) + f0, (30)

where we defined our approximated free energy as fN (j,β) and
collected the j independent constants into f0. Now Eq. (30)
is fully continuous and amenable to analysis. To find the
thermodynamic equilibrium of this system, we need to find the
value of j for which ∂fN (j,β)/∂j = 0 and ∂2fN (j,β)/∂j 2 >

0. For the first condition we have

∂

∂j
fN (j,β) = λ1 + λ2

N
j − 1

β
ψ0(N − j + 1) = 0. (31)

As an asymptotic series, we have

ψ0(x) 	 ln(x − 1/2), (32)

as can be affirmed by Taylor expansion ψ0(x) = ln x +
1/2x + O(x−2) [11]. Applying the approximation Eq. (32)
to Eq. (31) and setting the result to be valid for the equilibrium
value j = j , we then find the constraint

eβλ2 j/N = −e−βλ1 (j − N − 1/2), (33)

which has the solution

j

N
= 1 − 1

βλ2
W

(
βλ2

N
eβλ1+βλ2

)
+ O

(
1

N

)
, (34)

where W is the (branch unspecified) Lambert W function [12],
defined by

W (xex) = x. (35)

To specify the branch of the W which corresponds to a stable
equilibrium we compute the second derivative of our free
energy at this derived critical point. Doing so yields

∂2

∂j 2
fN (j = j,β) 	 1

N

(
λ2 + 1

β

1

1 − j/N

)

= λ2

N

(
1 + 1

W
(

βλ2

N
eβλ1+βλ2

)
)

. (36)

Thus Eq. (34) (for λ2 > 0) yields a free energy minimum for

W

(
βλ2

N
eβλ1+βλ2

)
> −1 (37)

and yields a maximum for the inverse condition. This amounts
to stating that the stable equilibrium for j is defined by the
principal branch of the Lambert W function where W =
W0 � −1, and the unstable equilibrium for j is defined by
the negative branch where W = W−1 < −1.

Thus, the order parameter for this system is

j 0

N
= 1 − 1

βλ2
W0

(
βλ2

N
eβλ1+βλ2

)
+ O

(
1

N

)
. (38)

We note that taking λ2 → 0 and using W (x) = x + O(x2) for
|x| � 1 returns us to the noninteracting result Eq. (17).

For completeness, we define the value of j which yields
a free energy maximum as j−1; it is related to Eq. (38) by
replacing the principal branch function W0 with W−1.

B. Discussion of parameter space

In the previous section, we found that the order parameter
for this system was given by Eq. (38). We noted that this
solution represents a local minimum of the free energy as
long as the Lambert W function satisfies W = W0 > −1. Thus
when this condition is violated, j 0 is no longer a valid stable
equilibrium and our system has undergone a “quasi” -phase
transition or simply a transition.

Moreover, our values of j are bounded below by j = 0
and bounded above by j = N , neither conditions of which are
naturally constrained by Eq. (38). Thus these two conditions
are associated with two other transitions. In all, then, there are
three conditions which define the quasi-phase boundaries in
this system.

While there are three conditions which define transitions in
this system, there are in fact five distinct regimes of parameter
space. We can obtain a qualitative sense of these regimes by
creating schematic plots of the free energy Eq. (30) for various
parameter values of λ1 and λ2. The possible plots can be placed
into five categories according to the plot’s stable or metastable
j values. We depict these possible plots in Fig. 3. We note that
only the free energy plots with valid values of j 0 contain what
we normally consider a thermodynamic equilibrium; the other
plots have “stable” values of j arising only from the j = 0
and/or j = N boundary conditions.

Qualitatively, we can name the states according to the
sequence space to which their equilibrium values of j

correspond. We know for j = 0, our system is in a state
with zero incorrect components in �θ and hence the system
is “perfectly ordered” or just “ordered.” Conversely, for j =
N our system has N incorrect components and hence the
system is “completely disordered” or just “disordered.” The
in-between case of j = j where 0 < j < N can be given the
related label of “partially ordered.” Thus, the regime names
associated with our possible values of the order parameter are
as follows:

(1) Ordered regime (j = 0 stable): Neither j 0 or j−1 exist;
f (N,β) > 0.

(2) Disordered regime (j = N stable): Neither j 0 or j−1
exist; f (N,β) < 0.

(3) Partially ordered regime (j = j 0 stable): Only j 0
exists.

(4) Order and disorder metastable regime (j = 0 and
j = N stable): Only j−1 exists.
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FIG. 3. Possible functional forms of Eq. (30). We note that
the stabilities that define the j = 0 and j = N points are not
thermodynamic stabilities [namely, they do not arise from the f ′(j ) =
0 condition]. Rather, since the spectrum of j values is bounded
below by 0 and above by N , owing to these boundary conditions
the system can become trapped in ordinarily unstable parts of the free
energy curve. The colors match the color of the associated region of
parameter space in Fig. 4.

(5) Order and partial-order metastable regime (j = 0 and
j = j 0 stable): Both j 0 and j−1 exist.

We note that it seems to be a fundamental feature (or a lack
of one) of this system that the free energy Eq. (30) does not
admit a metastability between partial order and disorder.

C. Monte Carlo generated parameter space

With these regime definitions, we can depict the parameter
space graphically. In Fig. 3 we showed the possible forms of
the free energy for this system where each was categorized
according to the existence of the local minimum critical point
j 0, the existence of the local maximum critical point j−1,
and the sign of the quantity fN (j,β). We can extrapolate
this categorization to λ1 − λ2 parameter space by determining
which regions of parameter space correspond to specific plots
in Eq. (30). By doing so through the Monte Carlo procedure
described in Appendix B, we generated 10,000 points of the
parameter space diagram in Fig. 4 for the β set to 1. We
note that the parameter space exhibits five regimes separated
by three lines cited in Table I, each of which corresponds
to the three conditions mentioned at the beginning of this
section. These lines can be derived analytically (as shown in
Appendix C) by considering the conditions in turn and which
regimes they serve to connect.

TABLE I. Functions defining boundaries between parameter
regimes.

Regime transition Boundary in parameter space

Order to partial order λ1 = 1
β

ln N

Order to order–partial-order λ2 = 1
β
W−1

( − N

e
e−βλ1

)
metastability

Order to disorder λ2 = − λ1
1−1/N

D. Triple and quadruple points and transition temperatures

From Fig. 4 we see that our system is characterized by two
points where there is a coexistence between multiple regimes.
Given that W−1(−e−1) = −1, we have that the ordered,
partially ordered, and order to partial-ordered metastability
coexistence point is characterized by the condition

λ1 = ln N/β and λ2 = −1/β. (39)

These conditions characterize the system’s triple point.
Similarly, for N � 1, the partially ordered, disordered,

order to partially ordered metastability, and order-disorder
metastability coexistence point is characterized by the con-
dition

λ1 = ln N/β 	 −λ2. (40)

This condition characterizes the quadruple point of the system.
Figure 4 also depicts the possible regimes of our system for

a given temperature and various Hamiltonian parameters λ1

and λ2. More physically, we may be interested in knowing
what are the “quasi” phase properties of a system with a
fixed λ1 and λ2 and a variable temperature. That is, what are
the temperatures which define the various transitions between
regimes in the system?

An arbitrary permutation system for a fixed N and at a
variable temperature is characterized by a specific energy
function Eq. (27). Such a system is therefore defined by a
specific λ1 and λ2, and the system can be associated with
a particular point (and hence region) in the parameter space
of Fig. 4. As we vary the temperature of this system, the
temperature-dependent regime-coexistence lines change, and
if they change in such a way as to extend the region of a
regime to newly encompass our original point, then our system
has undergone a transition. In this way, we can define the
temperatures which characterize various possible transitions
of this system.

First, from Fig. 4 and Eq. (C10) we note that the regime-
coexistence line between the partially ordered and disordered
regime is independent of temperature, and so there is no critical
temperature defining a partial-order to disorder transition.

From Eq. (C3), we can infer that the partial-order to order
transition is characterized by moving below the temperature

kBTc1 = λ1

ln N
. (41)

Contingent on which region of parameter space the system
lies, this temperature also characterizes the disorder to order-
disorder metastability transition and the partial-order to order–
partial-order metastability transition.

And from Eq. (C6), we can solve for the associated
transition temperature given fixed λ1 and λ2 to find

kBTc2 = (λ1 + λ2)

[
W0

(
− N

eλ2
(λ1 + λ2)

)]−1

, (42)

where this expression is only relevant for −λ1 < λ2 < 0 and
λ1 > kBT ln N . Moving above this temperature leads to the
order to order–partial-order metastability transition.
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FIG. 4. λ1 − λ2 parameter space for interacting mean-field system. We set β = 1 and N = 100. We followed the Monte Carlo procedure
outlined in the notes for 10 000 points. In the figure we also denoted the analytic lines [i.e., Eq. (C3), Eq. (C7), and Eq. (C10)] which define
the separation between the phases. The colors correspond to the colors of the free energy curve in Fig. 3.

IV. DISCUSSION

In this work, motivated by an abstraction of a foundational
problem in protein design, we posited and analyzed the basic
properties of a statistical physics model of permutations.
Formally, we considered a simple statistical physics model
where the space of states for N lattice sites was isomorphic to
the symmetric group of degree N [5] and where the energy of
each permutation was a function of how much the permutation
deviates from the identity permutation.

In this model, we found that due to a state space which
could not be factorized in a basis defined by lattice sites, even
the superficially noninteracting system can exhibit phaselike
transitions, i.e., temperature-dependent changes in the value
of the order parameter which do not exhibit the properties
typically associated which phase transitions in infinite systems.
When interactions are introduced through a quadratic mean-
field term, the system is capable of exhibiting five regimes
of thermal behavior and is characterized by two transition
temperatures corresponding to various quasi-phase transitions.

The introduced model provides us with a basic exactly
soluble system for certain interaction assumptions and thus
provides a concrete model-based understanding of a system
with a nonfactorizable state space. Because of its utility and the
type of results obtained, the model deserves to be subject to the
standard extensions of typical canonical models in statistical
mechanics. In particular, we hope to extend it to nontrivial
site-dependent interactions. For example, a nearest-neighbor
interaction Hamiltonian of the kind which characterizes the
Ising model,

H({θi}) = −q

N∑
i=1

Iθi �=ωi
Iθi+1 �=ωi+1 , (43)

would be an alternative physical extreme to the mean-field
interactions considered in Sec. III.

We could also consider a generalized chain of components
where the interactions between sites or the cost for an
incorrectly filled site is not constant but is drawn from a
distribution of values. Such a system of quenched disorder
would characterize a permutation glass which may contain
interesting results due to the unique nature of the state space.

Supposing it is possible to define more interesting interac-
tion models, a natural investigation would concern the renor-
malization group properties of the system. Specifically, we
would be interested in how would one sum over specific states
(as characteristic of a renormalization group transformation)
when the state space of a system looks like

Ssystem =
N∏

i=1

⊗Si , (44)

i.e., it is not factorizable along lattice sites.
Finally, to connect this model of permutations to problems

more relevant to protein design it would prove necessary
to incorporate the possibility of repeated components or the
background geometry of a lattice chain.
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APPENDIX A: ALTERNATIVE DERIVATIONS OF EQ. (33)

1. Hubbard-Stratonovich approach

We rederive Eq. (33) using the Hubbard-Stratonovich
method. We start this derivation assuming λ2 = −|λ2|; we will
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later see our resulting free energy can be analytically continued
to the λ2 > 0 case.

For λ2 = −|λ2|, the partition function is

ZN (β; λ1,λ2) =
N∑

j=0

gN (j )e−βλ1j+β|λ2|j 2/2N . (A1)

Then, applying the identity

eβ|λ2|j 2/2N =
√

N

2πβ|λ2|
∫ ∞

−∞
dx e−Nx2/2β|λ2|−jx, (A2)

we have

ZN (β; λ1,λ2) =
√

N

2πβ|λ2|
∫ ∞

−∞
dx e−Nx2/2β|λ2|

×
N∑

j=0

gN (j )e−j (βλ1+x)

=
√

N

2πβ|λ2|
∫ ∞

−∞
dx e−Nx2/2β|λ2|ZN (βλ1 + x),

(A3)

where zN (x) ≡ ∑N
j=0 gN (j )e−jx . From Eq. (12) we found

zN (x) =
∫ ∞

0
ds e−s[1 + (s − 1)e−x]N, (A4)

so Eq. (A3) becomes

ZN (β; λ1,λ2) =
√

N

2πβ|λ2|
∫ ∞

0
ds

∫ ∞

−∞
dx

× [1 + (s − 1)e−βλ1−x]Ne−s−Nx2/2β|λ2|.

(A5)

The function to which we apply steepest descent is then

h(s,x) = s + Nx2

2β|λ2| − N ln[1 + (s − 1)e−βλ1−x]. (A6)

Computing the conditions for ∂sh(s = s,x = x) = 0 and
∂xh(s = s,x = x) = 0, we obtain, respectively,

1 − N
e−βλ1−x

1 + (s − 1)e−βλ1−x
= 0, (A7)

x

β|λ2| + (s − 1)e−βλ1−x

1 + (s − 1)e−βλ1−x
= 0. (A8)

Solving for s in the first equation, we have

s = N + 1 − eβλ1+x, (A9)

and with the second equation we have the condition

x

β|λ2| = − 1

N
(s − 1). (A10)

Substituting the second condition into the first yields

s − 1 = N − eβλ1−β|λ2|(s−1)/N (A11)

or

e−β|λ2|(s−1)/N = eβλ1 [N − (s − 1)]. (A12)

Thus, the solution for s can be expressed in terms of the
Lambert W function as

s − 1

N
= 1 + 1

β|λ2|W
(

−β|λ2|
N

eβλ1−β|λ2|
)

. (A13)

For λ2 > 0, we can employ the complex version of the
Hubbard-Stratonovich identity:

e−βλ2j
2/2N =

√
N

2πβλ2

∫ ∞

−∞
dx e−Nx2/2βλ2−ijx . (A14)

Working through an analogous steepest descent procedure, we
find that the equilibrium value for s is

s − 1

N
= 1 − 1

βλ2
W

(
βλ2

N
eβλ1+βλ2

)
≡ j

N
, (A15)

which could have been extrapolated from Eq. (A13) by taking
|λ2| → −λ2. From this expression for the equilibrium condi-
tion, and as an analogy with the noninteracting case, it turns
out the order parameter in this case is not s but rather s − 1.

2. Gibbs-Bogoliubov inequality derivation of Eq. (33)

We rederive Eq. (33) using the Gibbs-Bogoliubov inequal-
ity [13]. The inequality is

F [H] � F [H0] + 〈H − H0〉0. (A16)

The Hamiltonian which defines our system is

H = λ1

N∑
i=1

Iθi �=ωi
+ λ2

2N

∑
i,j

Iθi �=ωi
Iθj �=ωj

≡ λ1j + λ2

2N
j 2,

(A17)

and our variational Hamiltonian is instead

H0 = λ0

N∑
i=1

Iθi �=ωi
= λ0j. (A18)

From Eq. (12) we know

F [H0] = − 1

β
ln ZN (βλ0)

= − 1

β
ln

{∫ ∞

0
ds e−s(1 + (s − 1)e−βλ0 )N

}
. (A19)

We can also define

〈O(j )〉0,N =
N∑

j=0

O(j ) e−βλ0j (A20)

as the average with respect to our variational Hamiltonian
Eq. (A18). Thus, Eq. (A16) becomes

F [H] � − 1

β
ln ZN (βλ0) + (λ1 − λ0)〈j 〉0,N + λ2

2N
〈j 2〉0,N

≡ f (λ0). (A21)

Differentiating f with respect to λ0 allows us to com-
pute the maximum of this quantity. Given 〈j 〉0, N =
−∂ ln ZN (βλ0)/∂(βλ0), we then find

f ′(λ0) = (λ1 − λ0)
∂

∂λ0
〈j 〉0,N + λ2

2N

∂

∂λ0
〈j 2〉0,N , (A22)
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which if we take to be zero at some λ0 = λ0 gives us

0 = (λ1 − λ0)
∂

∂λ0
〈j 〉0,N

∣∣∣∣
λ0=λ0

+ λ2

2N

∂

∂λ0
〈j 2〉0,N

∣∣∣∣
λ0=λ0

.

(A23)

To compute these derivatives we make use of various identities.
First we note

〈j 2〉0,N = 1

ZN (βλ0)

∂2

∂(βλ0)2
ZN (βλ0), (A24)

so

∂

∂(βλ0)
〈j 〉0,N = − ∂2

∂(βλ0)2
ln ZN (βλ0)

= − 1

ZN (βλ0)

∂2

∂(βλ0)2
ZN (βλ0)

+ 1

ZN (βλ0)2

(
∂

∂(βλ0)
ZN (βλ0)

)2

= −〈j 2〉0, N + 〈j 〉2
0, N . (A25)

This last equality implies

∂

∂(βλ0)
〈j 2〉0,N = −∂2〈j 〉0,N

∂(βλ0)2
+ 2〈j 〉0,N

∂〈j 〉0,N

∂(βλ0)
, (A26)

and so Eq. (A23) becomes

0 =
[
λ1 − λ0 + λ2

N
〈j 〉0,N

]
∂

∂λ0
〈j 〉0,N

∣∣∣∣
λ0=λ0

− λ2

2Nβ

∂2〈j 〉0,N

∂λ2
0

∣∣∣∣
λ0=λ0

. (A27)

To compute these quantities we need to approximate the
partition function for our variational system. Using the method
of steepest descent,

ZN (βλ0) =
∫ ∞

0
ds e−s[1 + (s − 1)e−βλ0 ]N

=
√

2πN

(
N

eβλ0

)N

exp(eβλ0 − N − 1)

× [1 + O(N−1)], (A28)

and so we have

〈j 〉0,N = − ∂

∂(βλ0)
ln ZN (βλ0)

= N − eβλ0 + O(N−1). (A29)

Computing the relevant derivatives in Eq. (A27), we find

0 =
[
λ1 − λ0 + λ2

N
〈j 〉0,N

]
[−eβλ0 + O(N−1)]

− λ2

2N
[−eβλ0 + O(N−1)] = 0

=
[
λ1 − λ0 + λ2

N
〈j 〉0,N − λ2

2N

]
eβλ0 + O(N−1). (A30)

Neglecting subleading terms of O(1/N) (a choice only valid
for 〈j 〉0,N � 1), solving for λ0, and using Eq. (A29) we then

obtain the equilibrium constraint,

eβλ1−βλ2/2N+βλ2〈j〉0,N /2N = N − 〈j 〉0,N , (A31)

which when solved for 〈j 〉0,N/N gives us

〈j 〉0,N/N = 1 − 1

βλ2
W

(
βλ2

N
eβλ1+βλ2(1− 1

2N
)

)
, (A32)

or, given our approximations and limiting expressions, the
result

〈j 〉0,N/N = 1 − 1

βλ2
W

(
βλ2

N
eβλ1+βλ2

)
+ O(N−1). (A33)

APPENDIX B: MONTE CARLO PROCEDURE
FOR PARAMETER SPACE

To generate Fig. 4, we implemented the following MC
algorithm:

(1) Uniformly sample two points for λ1 and λ2 separately
from within a certain bounded domain.

(2) Draw the free energy curve Eq. (30) corresponding to
the sampled values (λ1,λ2).

(3) Label the curve according to which schematic curve in
Fig. 3 it corresponds (i.e., according to its j 0, j− and fN (N,β)
properties).

(4) Color the point to signify the label.
We repeated this procedure for 10,000 points with β =

1. The regime separation lines were included after the MC
procedure from the analytic forms cited in the text.

APPENDIX C: ANALYTIC FUNCTIONS OF REGIME
BOUNDARIES

a. Order to partial-order transition

The regime boundary which separates the ordered and the
partially ordered regime is defined by the condition j 0 � 0.
For this regime boundary we have the condition

1 − 1

βλ2
W0

(
βλ2

N
eβλ1+βλ2

)
� 0 (C1)

or

W0

(
eβλ1

N
βλ2e

βλ2

)
� βλ2. (C2)

From a plot of W0(a xex)/x for real a, we see that
W (axex)/x > 1 if a > 1 and W (axex)/x < 1 if a < 1. Thus
this order to partial-order transition is defined by the condition
eβλ1/N = 1, or

λ1 = ln N

β
. (C3)

b. Order to order–partial-order metastability transition

The regime boundary which separates the ordered regime
from the order and partial-order metastability regime is defined
by the condition −1 � W < 0. This condition is where the
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j 0 and j− begin coexisting [12], thus creating the mutual
existence of a local maxima and local minima in Fig. 3. Thus
for this regime boundary we have the condition

−1 � W

(
βλ2

N
eβλ1+βλ2

)
< 0. (C4)

This condition is valid so long as the argument of W satisfies

−e−1 � βλ2

N
eβλ1+βλ2 < 0. (C5)

This inequality can only possibly be satisfied for λ2 < 0, and
if λ2 < 0 the right inequality is automatically true. So, our
transition condition is given by

−N

e
e−βλ1 = βλ2e

βλ2 . (C6)

In the order phase we automatically have βλ1 > ln N , so the
left-hand side of Eq. (C6) is greater than or equal to −e−1.
Moreover, since λ2 is exclusively negative, at βλ2 = ln N ,
βλ1 is at a maximum value of βλ2 = −1. For βλ2 � −1, the
solution to Eq. (C6) is then

λ2 = 1

β
W−1

(
−N

e
e−βλ1

)
. (C7)

c. Order to disorder transition

The regime boundary which separates the partially ordered
regime from the disordered regime is defined by the condition
j 0 � N − 1. We set the maximum value of j 0 to N − 1 rather
than N because Eq. (38) is associated with a free energy
which diverges at j 0 = N , and this approximate result is thus
only physical up to N − 1. Alternatively, we could see the
maximum condition j 0 = N − 1 as respecting the fact that
Eq. (38) is only valid up to O(N−1). For this regime boundary
we have the condition

1 − 1/N � 1 − 1

βλ2
W0

(
βλ2

N
eβλ1+βλ2

)
(C8)

or

βλ2

N
� W0

(
βλ2

N
eβλ2/Neβλ1−βλ2−βλ2/N

)
. (C9)

Again, using the condition that W0(a xex)/x > 1 if a > 1,
we find that the critical condition for this transition is βλ1 +
βλ2 − βλ2/N = 0 or

λ2 = − λ1

1 − 1/N
. (C10)
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