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In the self-assembly process which drives the formation of cellular membranes, micelles, and capsids, a
collection of separated subunits spontaneously binds together to form functional and more ordered structures. In
this work, we study the statistical physics of self-assembly in a simpler scenario: the formation of dimers from a
system of monomers. The properties of the model allow us to frame the microstate counting as a combinatorial
problem whose solution leads to an exact partition function. From the associated equilibrium conditions, we find
that such dimer systems come in two types: ”search-limited” and ”combinatorics-limited,” only the former of
which has states where partial assembly can be dominated by correct contacts. Using estimates of biophysical
quantities in systems of single-stranded DNA dimerization, transcription factor and DNA interactions, and
protein-protein interactions, we find that all of these systems appear to be of the search-limited type, i.e.,
their fully correct dimerization regimes are more limited by the ability of monomers to find one another in
the constituent volume than by the combinatorial disadvantage of correct dimers. We derive the parameter
requirements for fully correct dimerization and find that rather than the ratio of particle number and volume (i.e.,
number density) being the relevant quantity, it is the product of particle diversity and volume that is constrained.
Ultimately, this work contributes to an understanding of self-assembly by using the simple case of a system of
dimers to analytically study the combinatorics of assembly.
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I. INTRODUCTION

Self-assembly occurs in many microbiological systems,
driving the formation of bilayer membranes, micelles, and
virus capsids [1]. For a macromolecular system to be able
to undergo self-assembly, its components must be able to
find one another within their larger volume and also be able
to distinguish correct from incorrect contacts. In the process
of the system evolving towards its final configuration, the
number of possible incorrect contacts is always much greater
than the number of correct contacts, a fact which makes the
mathematical problem of self-assembly a combinatorial one.

As a brute force resolution to this combinatorial prob-
lem, researchers have often used computational methods
to study the specific properties of self-assembled systems
[2–4]. Conversely, analytical studies of self-assembly often
avoid combinatorics all together and begin under the infinite
volume-infinite particle number assumptions of the law of
mass action [5–7] or, in order to avoid the complications
associated with analyzing a specific system, have focused on
more phenomenological properties of self-assembly [8,9].

However, it is possible to study self-assembly analytically
and specifically in the context of a model whose combinatorial
properties are simple enough to admit an exact expression
for the partition function. Although the typical examples of
self-assembly involve the creation of large macromolecu-
lar structures on time scales relevant for cellular function,
a simple kind of self-assembly is exemplified in the way
single-stranded DNA fragments attach to their complementary
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strands, transcription factors find their correct DNA binding
sites, and proteins seek their optimal binding partners (Fig. 1).
In all of these systems, as in all systems capable of self-
assembly, monomers only assemble into a functional set of
interactions if the monomers can find one another and bind
correctly.

We can capture the basic features of these systems
with a simple model. Say we have 2N distinct monomers
α1, α2, . . . , α2N which form correct or incorrect contacts with
one another according to the reaction equation

αi + α j −⇀↽− αiα j . (1)

With 2N monomers, there are N (2N − 1) possible (αk, α�)
pairs, and we define N of these pairs as “correct” contacts
that have a lower binding energy than that of the remaining
2N (N − 1) contacts which are labeled as “incorrect.” The
binding energy is −(E0 + �) for correct contacts compared
to −E0 for incorrect ones, where E0,� > 0. We say the
system has undergone “fully correct dimerization” when all
monomers are bound to their correct partners.

In spite of the apparent simplicity of this model, the correct
and incorrect interactions are defined by nontrivial combina-
torics which lead to a unique partition function and interesting
phase behavior of the self-assembled system. In particular, for
a system of monomers contained in a volume V and satisfying
N � 1, we find that the two necessary (but not sufficient)
conditions the system must satisfy in order to be capable of
fully correct dimerization are

2N < eβ�, NV <
√

2 λ3
0 eβ(E0+�), (2)
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FIG. 1. Self-assembling biomolecular dimer systems. In (a), distinct single-stranded DNA (ssDNA) strands exist in a system with their
complementary strands and with other double-stranded DNA (dsDNA). In (b), transcription factors (TFs) exist in a system with their binding
sites on DNA and with already bound TF-DNA dimers. Since the binding sites embedded in the much longer strand of an entire DNA molecule,
the effective DNA molecules to which the TFs bind are much less motile than the TFs. In (c), distinct protein monomers exist in a system with
the heterodimers formed from them. In all systems, we consider “fully correct assembly” or “fully correct dimerization” as the state where all
monomers are bound to their correct monomer or binding site.

where β = 1/kBT and λ0 is the de Broglie thermal wavelength
of a monomer. The first condition in Eq. (2) ensures that
the energy advantage for correct contacts can overcome the
combinatorial disadvantage of correct contacts. The second
condition ensures that the monomers are able to find one
another in their volume and bind together. What is interesting
about these dual conditions is that, although one might think
that number density is a relevant quantity in defining the
possibility of self-assembly, the ratio of N and V does not
appear, and instead it is their product and N alone which are
constrained. Moreover, both conditions in Eq. (2) can only
clearly be satisfied under finite number and finite volume
assumptions and thus a precise statistical physics formulation
is required to obtain them.

This problem of building models of correct and incor-
rect dimers has a few antecedents in the study of protein
interactions. The authors of [10] computationally studied
the diffusion of dimer-forming lattice proteins in a three-
dimensional grid and inferred that low-energy specific dimers
dominate higher-energy nonspecific dimers, only if the system
temperature is low enough that specific dimers are stable but
high enough that nonspecific dimers are unstable. The authors
of [11] used the law of mass action [12] to study specific
and nonspecific protein interactions and establish approximate
bounds on the minimum protein concentration and maximum
protein diversity a cell requires to be in a safe zone, i.e.,
a parameter regime where nonfunctional interactions com-
prise fewer than 50% of the total interactions. In [13], the
authors employed a computational evolutionary model of
protein interactions to show how selection pressure that seeks
to minimize nonspecific interactions can determine the way
the energy gap between specific and nonspecific interactions
depends on the number of protein interfaces.

What distinguishes the current work from these pre-
vious approaches is that it begins with simple assump-
tions concerning how correct and incorrect dimers can form
from monomers (that are not necessarily proteins) and em-
beds these assumptions in an analytical statistical mechanics
framework. Using such a framework allows us to both respect
the finite-number properties key to defining the combinatorics
of the system and to derive general equations governing dimer

assembly rather than having to infer such equations from
computational trends.

The purpose of this work is to use statistical physics to
better understand the properties of dimer self-assembly. In
Sec. II, we present the premises of our model, connect these
premises to a combinatorial problem we term the ”dance
hall problem,” and then use the solution of this problem to
compute the partition function of the system. In Sec. III, we
approximate the partition function through Laplace’s method
and obtain the equilibrium conditions relating the average
number of correct dimers to the total number of dimers in
the system. In Sec. IV, we define the condition under which
the dimer system undergoes fully correct dimerization, and
use this condition to categorize dimer systems as one of two
approximate types. In this section, we also numerically solve
and plot the equilibrium conditions, compare the results to
simulations, and depict the dimer system in parameter space.
In Sec. V, we derive the necessary conditions for the system
to be capable of fully correct dimerization, and interpret the
two types as corresponding to ”search” or ”combinatorics”
limits on fully correct dimerization. In Sec. VI, we apply
the derived results to biomolecular systems of ssDNA-ssDNA
interactions, TF-DNA interactions, and protein-protein inter-
actions ultimately finding that all such systems appear to be
of the search-limited type. In the final sections, we outline
the limitations of the model and consider ways to extend it
to better reflect the properties of real dimer systems.

II. NONGENDERED PARTITION FUNCTION

In this section, we build the partition function for a system
of distinguishable monomers that can form incorrect or cor-
rect dimers contingent on the dimer’s constituent monomers.
To match the physical conditions of self-assembly, we impose
that the binding energy for the correct dimer is lower than the
binding energy of the incorrect dimer, and thus that correct
dimers are energetically preferred. However, the combina-
torics of the dimer assembly is such that there are many more
incorrect dimer microstates than correct dimer microstates,
and so incorrect dimers are entropically preferred. We refer
to this as the “combinatorial disadvantage” of correct dimers.
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We complete the calculation in steps: After outlining the
particle and energy properties of the model, we present the
partition function, reframe its computation in terms of a
combinatorial subproblem, and finally use the solution to this
subproblem to obtain an exact integral expression for the
partition function.

The system studied in this section (and presented through-
out the main body of the paper) is termed “nongendered” to
emphasize the fact that there is only one type of monomer and
each monomer can bind to any other monomer. Such systems
well describe the conditions of ssDNA-ssDNA interactions
and some protein-protein interactions. But in TF-DNA inter-
actions, there are two types of “monomers” each of which
only binds to the other type; we call this system “gendered.”
In the Appendix, we outline the mathematical and physical
properties of a gendered dimer model.

A. Naive partition function

Say that our system contains 2N distinguishable monomers
labeled α1, α2, . . . , α2N . Each monomer has a mass m0, and
the monomers exist at thermal equilibrium temperature T in
a volume V . Each monomer can bind to any other monomer,
and when monomer αk binds to monomer α�, the two form
the dimer (αk, α�) where the ordering within the pair is not
important.

We define correct dimers as those consisting of an αk bind-
ing with αN+k where k � N ; all other dimers are considered
incorrect. Thus each monomer has one other monomer to
which it binds to yield a correct dimer, and, more generally,
there are N possible correct dimers and 2N (2N − 1)/2 −
N = 2N (N − 1) possible incorrect dimers. We take the in-
correct dimers to form with binding energy −E0, and the
correct dimers to form with binding energy −(E0 + �) where
E0,� > 0. Summarily, the binding energy for a dimer (αi, α j )
is

E (αi, α j ) =
{−(E0 + �) if| j − i| = N,

−E0 if | j − i| �= N.
(3)

We term E0 the ”offset binding energy,” and � the ”energy
advantage” of correct dimers. For simplicity, we will assume
that the monomers and dimers are point particles with no
rotational or vibrational properties. Also, apart from their
binding, the monomers and the dimers are free particles which
do not interact with one another. Therefore, the total energy of
a microstate comes from the kinetic energies of the monomers
and the kinetic energies and binding energies of the dimers.
An example microstate for a nongendered dimer system is
shown in Fig. 2.

In order to study the thermal equilibrium properties of such
a system, we need to construct its partition function. To build
the partition function we must define the microstates of the
system, the energy of a microstate, the various degeneracy
factors relevant to defining a microstate, and how we will
sum over all microstates. Given the definition of our system, a
naive choice for how to characterize the system microstate is
to use a 2N × 2N contact matrix C whose elements are defined

FIG. 2. Example microstate of the nongendered system with
2N = 30 monomers. Correct dimers consist of binding k to k + 15
and have binding energy −(E0 + �). All other dimers are incorrect
and have binding energy −E0. This microstate has four correct
dimers (in blue), six incorrect dimers (in yellow), and ten monomers
(in grey). For pictorial clarity, the figure represents monomers as
half circles, but monomers are taken to be point particles in the
model. To which half circle the individual monomers correspond
is not important. The total binding energy for this microstate is
−(10E0 + 4�).

according to

Ci j =
{

1 if dimer (αi, α j ) exists in system,

0 otherwise.
(4)

With the elements Ci j , we can then specify which monomers
exist in isolation and which are bound together. From the
constraints of the system, we can also infer that Ci j has
no diagonal elements, is symmetric, and only has a single
nonzero entry of 1 in each column or row. Given Eqs. (3) and
(4), the energy of a particular microstate would then be

E ({Ci j}) =
2N∑
i< j

Ci jE (αi, α j )

= −E0

2N∑
i< j

Ci j − �

2N∑
i< j

Ci j δN, j−i. (5)

By the definition of the contact matrix in Eq. (4), the total
number of dimers in the system is

∑
i< j Ci j , and the total

number of monomers is 2N − 2
∑

i< j Ci j . Presuming we are
working under dilute-solution conditions, the monomers and
dimers are noninteracting, and the degeneracy of a particular
microstate Ci j can be accounted for by including factors of
the ideal-gas partition functions for the appropriate number
of monomers and dimers. If we have N distinguishable and
noninteracting point particles of mass m0, the free-particle
contribution to the partition function is

Zfree =
(

V

λ3
0

)N

, (6)

where V is the volume of the system, and λ0 = h/
√

2πm0kBT
is the thermal de Broglie wavelength of a single monomer.
There is no permutation correction in Eq. (6) because our par-
ticles are distinguishable. From Eqs. (5) and (6), the partition
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function for the dimer system can be expressed as

ZN (V, T, E0,�) =
∑
{Ci j}

exp

⎡
⎣−β

2N∑
i< j

Ci jE (αi, α j )

⎤
⎦

×
(

V

λ3
0

)2N−2
∑

Ci j
(

V

(λ0/
√

2)3

)∑
Ci j

,

(7)

where β = 1/kBT , the dimers have mass 2m0,
∑

Ci j sums
over indices i < j, and the microstate summation runs over
all valid contact matrices for this system.

Our larger objective is to derive an analytic form for
the partition function and to then use this partition function
to derive the thermal equilibrium conditions. But according
to Eq. (7), in order to compute the partition function we have
to enumerate and then sum over all valid contact matrices
for this system. The set of possible contact matrices are
all 2N × 2N matrices that are symmetric, have no diagonal
elements, and where each row’s and each column’s only
nonzero element is 1. Finding a systematic way to enumerate
such matrices is challenging enough, but further complicating
the calculation is the way the binding energy Eq. (5) changes
contingent on which elements in C are nonzero.

We can bypass these complications by expressing Eq. (7)
as a summation over states defined by the number of total
dimers and number of correct dimers in the system. In terms
of the contact matrix, we have

k =
2N∑
i< j

Ci j , m =
2N∑
i< j

Ci j δN, j−i, (8)

as the number of total dimers and the number of correct
dimers, respectively. Then, rather than defining and summing
over all possible contact matrices, we need only sum over the
possible values of k and m with the appropriate Boltzmann and
degeneracy factors. In constructing the partition function, we
define a state by a particular value of k and m. Equation (5)
indicates that the binding energy for such a state is −kE0 −
m�. Therefore, the partition function Eq. (7) can be written
as

ZN (V, T, E0,�) =
N∑

k=0

k∑
m=0

�N (k, m) eβ(kE0+m�)

×
(

V

λ3
0

)2N−2k( V

(λ0/
√

2)3

)k

, (9)

where �N (k, m) is the number of ways to construct a mi-
crostate with k dimers, of which only m are correct dimers.
The task of computing the partition function now reduces to
the task of computing the degeneracy factor �N (k, m), and
this calculation amounts to a problem of combinatorics.

B. Dance-hall problem

Determining �N (k, m) generalizes beyond the constraints
of this problem, and we can embed its definition in the answer
to a less abstract problem. We phrase the problem as follows:

N pairs of people enter a dance hall. All people in the
pairs separate, and people mingle with one another such that

at some later time, some people are paired and other people
are alone. At this later time, there are k pairs of people on the
dance floor, and of this set, there are m pairs from the set of
original pairs. How many ways can this happen?

The quantity �N (k, m) is the answer to this question.
To determine this quantity, we break it up into two factors:
�N (k, m) can be written as a product between the number of
ways to select m of the original pairs from the initial set of N
pairs and the number of ways to create, from the remaining
2(N − m) people, k − m pairs which are not amongst the
remaining N − m original pairs. We thus have

�N (k, m) =
(

N

m

)
aN−m,k−m, (10)

where an,� is the number of ways to form � pairs from a set of
2n originally paired elements such that none of these � pairs
coincides with any of the original n pairs.

The quantity �N (k, m) must also satisfy a summation
identity which we can use to check our final result. The total
number of ways to form k pairs out of a collection of 2N
people (each of which can form a pair with any other person)
is the number of ways to select 2k people to be amongst the
pairs multiplied by (2k − 1)!! ≡ (2k)!/(2kk!), the number of
ways to rearrange the selected people amongst the pairs [14].
Thus, summing Eq. (10) over all possible values of k, we
should find(

2N

2k

)
(2k − 1)!! =

k∑
m=0

(
N

m

)
aN−k,k−m. (11)

To check this result, we need only determine an,�.
It is easy to calculate an,� for a few representative values.

For � = 1, an,1 is the number of ways to create a single pair
that is not among the original n pairs. In other words, an,1 is
the difference between the number of ways to pair 2n objects
and the number of original pairs:

an,1 = 2n(2n − 1)

2
− n = 2n(n − 1). (12)

For � = n, an,� reduces to a solution to the “bridge couples
problem” [15]: The number of ways to completely rearrange
n paired people into n new pairs such that none of these pairs
is amongst the original collection is

an,n =
n∑

j=0

(−1) j

(
n

j

)
(2n − 2 j − 1)!!. (13)

For general �, we can find an,� by applying the principle of
inclusion and exclusion [14]. We work through this derivation
in Sec. 2 of the Supplemental Material [16] and ultimately find

an,� =
�∑

j=0

(−1) j

(
n

j

)(
2n − 2 j

2� − 2 j

)
(2� − 2 j − 1)!!. (14)

It is simple to check that Eq. (14) satisfies Eq. (13) and
straightforward to check that it satisfies Eq. (12). To check
Eq. (11), it is necessary to express Eq. (14) in terms of an
integral as is done at the end of Sec. 2 of the Supplemental
Material [16].
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C. Final partition function

Expressing Eq. (10) in terms of the derived result Eq. (14),
we find that Eq. (9) provides an exact partition function for our
system of dimer-forming nongendered monomers. However
Eq. (9) is not yet in its most reduced form because it is still
written as a summation over discrete indices. We can write this
partition function in a form more responsive to the methods
of calculus by using additional integration and combinatorial
identities (see Sec. 3 of the Supplemental Material [16] for
details). In the end, we find the partition function

ZN (V, T, E0,�)

= 1

2
√

π �(N + 1/2)

(
V

λ3
0

)2N

×
∫ ∞

0

∫ ∞

0
dx dy

e−x−y

√
xy

(M+2N + M−2N ), (15)

where

M± ≡ √
x ±

(
2
√

2 λ3
0

V

)1/2

eβE0/2
√

y (x; β�) , (16)

and

(x; β�) ≡ eβ� + 2x − 1, (17)

with � being the Gamma function. Equation (15) is an exact
result and no mathematical approximations have been made
in obtaining it. Thus it is valid for all N .

The advantage in expressing our original partition function
Eq. (7) as Eq. (15) is that, as an exponential integral, Eq. (15)
is now amenable to approximation via Laplace’s method, and
we can use this method to obtain the equilibrium conditions of
the system. First, given the appearance of k and m in Eq. (7),
we can compute the average number of dimers with

〈k〉 = ∂

∂ (βE0)
ln ZN , (18)

and the average number of correct dimers with

〈m〉 = ∂

∂ (β�)
ln ZN . (19)

We can use similar derivatives to compute the various ele-
ments of the covariance matrix for k and m:(

σ 2
k σ 2

km

σ 2
mk σ 2

m

)
=

(
∂2
βE0

∂βE0∂β�

∂β�∂βE0 ∂2
β�

)
ln ZN , (20)

where σ 2
k is the variance of the total number of dimers, σ 2

m is
the variance of the number of correct dimers, and σ 2

km = σ 2
mk

is the covariance between the total number of dimers and the
number of correct dimers.

Equations (18)–(20) represent the main physical observ-
ables of this model, and computing these quantities will allow
us to better characterize the various properties of the self-
assembling dimer system. For example, we should be able
to determine the conditions under which the energetic benefit
for having a state of all correct dimers outweighs the entropic
cost of not only having dimers rather than monomers but also
of selecting the N correct dimers out of a much larger set of
incorrect dimers. Such conditions would constitute “regime”

conditions for this system, and in order to find these conditions
we first need to more specifically characterize the equilibrium
properties of the system.

III. EQUILIBRIUM CONDITIONS OF
NONGENDERED SYSTEM

With the partition function Eq. (15), we now have the main
theoretical tool we need to explore the equilibrium properties
of our system of nongendered monomers. Our next task is
to extract from this partition function physical information
concerning the number of total dimers and the number of
correct dimers. However, keeping Eq. (15) as an integral in the
subsequent analysis would result in cumbersome expressions
for both 〈k〉 and 〈m〉. It would be far simpler to approximate
Eq. (15) as a function without an integral, and to then use this
new function as a proxy for the partition function.

Working towards this goal, we first rewrite Eq. (15) in a
more suggestive form. Defining the effective free energy as

βFN (x, y;V, T, E0,�)

= x + y + 1
2 ln(xy) − ln(M2N

+ + M2N
− ) + βF0(N,V, T ),

(21)

where βF0(N,V, T ) represents terms that are independent of
the variables x and y, we have

ZN (V, T, E0,�)

=
∫ ∞

0

∫ ∞

0
dx dy exp[−βFN (x, y;V, T, E0,�)]. (22)

Next, by Laplace’s method [17], we can take ZN in the N � 1
limit to be dominated by the local maximum of its exponential
integrand. We can then make the approximation

ZN (V, T, E0,�) 	 2π (det H )−1/2 exp[−βFN ]|x=x̄,y=ȳ,

(23)

where x̄ and ȳ are the critical points of Eq. (21) defined by

∂i(βFN )|x=x̄,y=ȳ = 0, (24)

for i = x, y, and H is the Hessian matrix with the elements

Hi j = ∂i∂ j (βFN )|x=x̄,y=ȳ. (25)

In order for Eq. (23) to be a valid approximation [and have an
error of at most O(N−1)], then x̄ and ȳ must not only satisfy
Eq. (24), but the Hessian matrix at these critical points must
also be positive definite [18]; namely, it must satisfy

det H > 0, TrH > 0. (26)

The two conditions Eqs. (24) and (26) together ensure that
βFN is at a local minimum at the critical points x̄ and ȳ and
thus that it properly defines the thermodynamic equilibrium
of the system.

With the right side of Eq. (23) we now have a theoretically
closed form expression that we can use as a proxy for a our
partition function. We can transcribe the mostly mathemat-
ical conditions defining βFN into physical results by using
Eqs. (18), (19), and (23), to establish a system of equations
between 〈k〉, 〈m〉, x̄, and ȳ. In deriving these equations, we
take Eq. (21) evaluated at x = x̄ and y = ȳ to be the true free
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energy of this system [19]. Solving this system, we obtain
equilibrium conditions written exclusively in terms of 〈k〉 and
〈m〉:

4
√

2 λ3
0

V
eβE0 = 〈k〉 − 〈m〉(1 − e−β�)

(N − 〈k〉)2
, (27)

eβ�

2
= 〈m〉 N − 〈m〉(1 − e−β�)

〈k〉 − 〈m〉(1 − e−β�)
. (28)

In Sec. 4.1 of the Supplemental Material [16], we derive the
conditions Eqs. (27) and (28), and in Sec. 4.2 of the Sup-
plemental Material [16], we ensure the validity of Laplace’s
method by checking that the relevant critical points satisfy
Eq. (26). To be precise, these equilibrium conditions have
errors of the order of O(〈k〉−1) and O(N−1), but we will take
them to be exact in the subsequent analysis because these
errors only become relevant when we are considering few
particle systems or systems which are mostly composed of
monomers.

Equations (27) and (28) tell us how the average number
of dimers 〈k〉 and the average number of correct dimers
〈m〉 relate to each other and to system parameters like the
number of particles, system volume, and the binding energies
of correct and incorrect dimers. Their form is reminiscent
of law of mass action equations—i.e., they have an energy
dependent exponential term on one side and particle number
ratios on the other—however, there are some important dif-
ferences. For one, factors of (1 − e−β�) multiply the average
number of correct dimers, a feature which we will later see
is important in deriving results for the � → 0 limit of the
system. Moreover, in Eq. (28) there is an N dependent term
which cannot be related to the typical particle number ratios
of the law of mass action, but which we will see is important
in defining the state of fully correct dimerization.

With Eq. (20) we can calculate the covariance and variance
relationships between the average number of dimers and the
average number of correct dimers. Using the approximate free
energy given in Eq. (S30) of the Supplemental Material [16]
and evaluated at x = x̄, y = ȳ, we find

σ 2
k = 1

2N
〈k〉(N − 〈k〉), (29)

σ 2
km = 1

2N
〈m〉(N − 〈k〉), (30)

σ 2
m = 〈m〉 − 〈m〉2

2

(
1

〈k〉 + 1

N

)
(31)

indicating that the thermal fluctuations in our order parameters
go to zero once the system becomes completely dimerized
(〈k〉 	 N) and completely composed of all correct dimers
(〈m〉 	 N).

From here, we could attempt to solve the equilibrium
conditions Eqs. (27) and (28) and obtain explicit expressions
for 〈k〉 and 〈m〉 as functions of temperature and other system
parameters. However, as coupled quadratic equations, these
conditions yield quartic equations for 〈k〉 and 〈m〉. There are
methods for obtaining analytic solutions to quartic equations
[20], but the general solutions are sufficiently complicated as
to not be too physically useful. So we instead solve these
equilibrium conditions numerically.

But before we pursue a numerical solution, we can still
build understanding of the system by analytically considering
two special cases: The case where correct dimers do not have a
binding energy advantage over incorrect dimers, and the case
where the offset binding energy is so large that all monomers
have formed (not necessarily correct) dimers.

A. No energy advantage (� = 0)

We consider the system without correct dimers having
an energy advantage over incorrect dimers, namely the case
where � = 0. For this case, we define the system by the
reaction equation

αi + α j −⇀↽− αiα j, binding energy = −E0, (32)

where −E0 is the binding energy of the forward reaction.
The partition function for such a system can easily be written
down by taking the appropriate limit of the partition function
Eq. (15). We find

ZN (V, T, E0,� = 0) = 1

2
√

π

(
V

λ3
0

)2N ∫ ∞

0
dy

e−y

√
y

× [(1 +
√

2δy )2N + (1 −
√

2δy )2N ],

(33)

where

δ ≡ 2
√

2 λ3
0

V
eβE0 . (34)

To derive the equilibrium conditions for this system, we can
apply Laplace’s method to Eq. (33) in a way similar to the
method’s application to Eq. (15). However, doing so would
lead to equilibrium conditions for 〈k〉 alone, since the param-
eter � [which defines 〈m〉 through 〈m〉 = ∂ ln ZN/∂ (β�)] is
absent. Alternatively, we can simply consider Eqs. (27) and
(28) for � = 0. Doing so, we find

4
√

2 λ3
0

V
eβE0 = 〈k〉

(N − 〈k〉)2
, 〈m〉 = 〈k〉

2N
. (35)

These equations have straightforward interpretations from the
perspective of the law of mass action and counting, respec-
tively.

Identifying the concentration of monomers as
[monomers] = (2N − 2〈k〉)/V and the concentration of
dimers as [dimers] = 〈k〉/V , we can write the first equation
in Eq. (35) as

√
2 λ3

0 eβE0 = [dimers]

[monomers]2 , (36)

which is reminiscent of a law of mass action interpretation
of Eq. (32). The left side of Eq. (36) is off by a factor of
2 from what we would precisely calculate using the law of
mass action because a foundational assumption of our dimer
system is that each αi occurs once and is distinguishable from
α j for j �= i, and such an assumption of distinguishability is
not manifest in the simple ”monomer + monomer −⇀↽− dimer”
rendering of Eq. (32).

The second equation in Eq. (35) can be understood with
a simple argument. If there is no energy difference between
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FIG. 3. Example microstates of a graph system with 2N = 10 vertices each of which has degree 1. The graph in (a) defines the lowest
energy microstate with energy E = −5�. Each graph that has an edge not found in the lowest energy graph incurs an energy penalty +�.
Therefore, the graph in (b) has an energy E = −2�, and the graph in (c) has an energy E = 0. Studying the equilibrium statistical physics
of such a collection of graphs leads to the partition function in Eq. (38) without the factor of cN and the additional corrections. Equation (39)
indicates that the system assumes its lowest energy graph at or below the nonzero temperature �/ ln(10).

correct dimers and incorrect dimers, then the ratio between
the average number of correct dimers and the average number
of dimers should be equal to the ratio between the possible
values of each. Given that there are N possible correct dimers
and 2N (2N − 1)/2 possible dimers, we should find that the
ratio between the average number of correct dimers and the
average number of dimers at thermal equilibrium is

〈m〉
〈k〉 = N

2N (2N − 1)2/2
= 1

2N − 1
, (37)

which, in the N � 1 limit, is consistent with the second
equation of Eq. (35).

B. Complete dimerization (E0 � kBT )

If our dimer system had an offset binding energy that was
much larger than the energy scale of thermal fluctuations, then
the system would be entirely composed of dimers, and the
corresponding thermodynamics would be determined by the
combinatorics of correct and incorrect interactions. In such a
situation, the only energy parameter relevant in defining the
microstate of the system would be �. In this E0 � kBT limit,
the partition function Eq. (15) reduces to

ZN (V, T, E0 � kBT,�)

= cN

√
π

∫ ∞

0
dx

e−x

√
x

(eβ� + 2x − 1)N + O(c−1), (38)

where c = (V/λ3
0)eβE0 . Given that 〈k〉 = ∂ ln ZN/∂ (βE0),

Eq. (38) implies that 〈k〉 	 N . Analyzing Eq. (27) in this
limit is difficult because of the divergence that occurs as
〈k〉 approaches N , but the second equation suffers no such
divergence. Using 〈k〉 	 N in Eq. (28) yields for 〈m〉

〈m〉 	 eβ�

2
. (39)

At the highest temperatures, Eq. (39) gives us the expected
result that the system reduces to one of virtually no correct
dimers, 〈m〉 	 1/2. However, given that 〈m〉 cannot exceed N ,
Eq. (39) also implies that there is a finite temperature below
which 〈m〉 	 N , and hence at which all of the dimers in the

system are correct. This temperature is kBT 	 �/ ln(2N ). The
fact that this temperature is nonzero for finite N is important
since such a result contradicts a potential expectation that
complete order is only possible at zero temperature. We do not
call this behavior a phase transition since it disappears in the
thermodynamic N → ∞ limit, but it is clear that, like a phase
transition, moving below this temperature results in behavior
that cannot be fully captured by our analytic approximations.

Finally, Eq. (38) has a simple interpretation from the per-
spective of the statistical physics of graphs. We consider the
set of graphs with N edges and 2N vertices where each vertex
has degree 1. If we define one graph in this set as the lowest
energy graph (with E = −N�), and say that the system incurs
an energy penalty +� whenever a graph has an edge not
found in the lowest energy graph, then the partition function
for the system is given by the first term in Eq. (38) without
the factor of cN . Moreover, Eq. (39) indicates that below
a temperature �/ ln(2N ), the system settles into its lowest
energy graph (Fig. 3). In the next section, we will define the
temperature at which fully correct dimerization occurs for
arbitrary � and E0, and we will see that kBT = �/ ln(2N )
is a special case of a more general result.

IV. TYPES AND REGIMES OF DIMER SYSTEMS

We say that our dimer system has undergone fully correct
dimerization when the average number of dimers is equal
to the average number of correct dimers, 〈k〉 = 〈m〉. In this
section, we use this definition to show that the dimer system
can be categorized as one of two types. This categorization
is based on analytic approximations for the temperature at
which fully correct dimerization is achieved, and by plotting
simulations and numerical solutions to Eqs. (27) and (28) for
these two system types, we find that the categorization also
reflects a qualitative difference in the relationship between 〈k〉
and 〈m〉. With the intuition from these numerical analyses,
we then define different physical regimes of the system (e.g.,
complete dimerization, partial dimerization, negligible dimer-
ization, etc.) and use the βE0 − β� and 2N − V/λ3

0 parameter
spaces to show that the two system types can access different
regimes of self-assembly.
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A. Type I and type II dimer systems

When our system is at high T we can expect most of the
monomers to exist alone such that 〈m〉, the average number of
correct dimers, and 〈k〉, the average number of total dimers,
are both O(1). However, as we decrease the system tempera-
ture, we expect there to be a point at which 〈m〉 = 〈k〉. At this
point, we would say the system is in the regime of fully correct
dimerization. At what temperature does the system enter this
regime?

Imposing 〈m〉 = 〈k〉 on both Eqs. (27) and (28), and pre-
suming that this condition is first valid at the critical tempera-
ture Tc, we find that Tc must satisfy

√
2 λ3

0,c

V
eβc (E0+�) (1 − 2Ne−βc�)2

1 − e−βc�
= N − 1/2, (40)

where λ0,c = h/
√

2πm0kBTc and βc = 1/kBTc. Moreover, at
this temperature, 〈m〉 and 〈k〉 assume the common value

〈m〉 = 〈k〉 = N − 1/2

1 − e−βc�
. (41)

From Eq. (40), we can show that kBTc is bounded above
by �/ ln(2N ) which, together with Eq. (41), implies that, at
T = Tc, 〈k〉 and 〈m〉 have a value between N − 1/2 and N .
Therefore, for this regime of fully correct dimerization, not
only do all the dimers consist entirely of correct dimers, but
all the monomers have formed dimers.

For general parameter values, Eq. (40) requires numerical
methods to solve, but it is possible to find approximate an-
alytical solutions in two limiting cases. In the case of large
energy advantage for correct dimers (βc� � 1), the terms
proportional to e−βc� go to zero, and we can solve for Tc

explicitly to find

kBTc 	 2

3
(E0 + �)

[
W0

(
E0 + �

3EV
(2N )2/3

)]−1

+ O(N−1)

≡ kBTI, (42)

where we defined

EV ≡ h2

2πm0V 2/3
, (43)

as an effective energy a free monomer of mass m0 in a volume
V , and where W0 is the principal branch of the Lambert W
function defined by the condition W0(xex ) = x for x > −1
[21]. Alternatively, in the case where the offset binding energy
is large (βcE0 � 1), the squared quantity in Eq. (40) must
approach 0 to compensate for its large coefficient, and we find

kBTc 	 �

ln(2N )
≡ kBTII. (44)

In practice, the solution to Eq. (40) cannot always be ap-
proximated by either TI or TII, but in cases when it can,
the corresponding thermal dependencies for 〈k〉 and 〈m〉 are
sufficiently different between these two limiting cases that it
is appropriate to categorize these cases as two different system
types. We define these two system types approximately as

system type =
{

type I for Tc 	 TI,

type II for Tc 	 TII.
(45)

For systems where Tc cannot be approximated by either TI or
TII, we call the system type “indeterminate.”

In the following subsections, we explore this system cate-
gorization and the implications of Eq. (40) in two ways: first,
using Eq. (45) to categorize numerical solutions to Eqs. (27)
and (28); second, constructing a parameter space plot of the
solutions and using the system categorization to understand
which spaces are accessible to type I and type II systems.

B. Numerical solutions and simulations

In Fig. 4, we plot the numerical solutions to the equilibrium
conditions Eqs. (27) and (28) and compare the results to sim-
ulation results for type I, type II, and indeterminate systems.
The error bars in the plots are computed from Eqs. (29) and
(31), and the system is simulated using a Metropolis-Hastings
Monte Carlo algorithm with a set of moves chosen to ensure
efficient exploration of the state space (see Sec. 5 of the
Supplemental Material [16] for details).

The qualitative difference between type I and type II
systems is apparent from comparing how 〈k〉 and 〈m〉 relate
to one another for each system type. In both system types,
when T < Tc, the equilibrium equations (27) and (28) break
down and 〈k〉 and 〈m〉 assume the value given by Eq. (41).
But type I systems feature a soft transition from 〈m〉 	 N to
〈m〉 < N after which 〈m〉 closely shadows the behavior of 〈k〉,
indicating that most of the dimers in such systems are correct.
Conversely, type II systems feature a sharp transition for 〈m〉
at T 	 �/ ln(2N ) followed by an exponential decline which
drops 〈m〉 far away from the 〈k〉 value, indicating that most
of the dimers in such systems are incorrect. The sharpness of
the transition for type II systems leads to relatively large fluc-
tuations in 〈m〉 as shown by the larger discrepancy between
simulation and analytic results in Fig. 4(c) versus those in
Figs. 4(a) and 4(b).

In general, above the critical temperature Tc, type I systems
have dimers that are dominated by correct contacts while
type II systems have dimers that are dominated by incorrect
contacts.

C. Parameter space plots

In Eq. (41), we took the relationship 〈m〉 = 〈k〉 to define the
fully correct dimerization regime of the dimer system. This
regime is evident in all the plots in Fig. 4 for T � Tc, but these
plots also show that there are many different relationships
between 〈k〉 and 〈m〉 that we can use to define various regimes
of dimer assembly. It is easiest to get a sense of these regimes
with parameter space plots.

Figures 5(a) and 5(b) depict, respectively, βE0 − β� and
2N − V/λ3

0 parameter spaces for the dimer system with N and
V fixed in the former and E0 and � fixed in the latter. A system
at a particular temperature and with particular parameter
values is located at a specific point on either parameter space
plot. For example, the T = 1.0 values of 〈k〉 and 〈m〉 in the
plots Figs. 4(a)– 4(c) are represented, respectively, as �, +,
and � markers in Fig. 5(a), and the T = 1.0 values of 〈k〉 and
〈m〉 in Fig. 4(c) are represented by in Fig. 5(b). We emphasize
that because our results are derived in the N � 1 limit, the
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FIG. 4. Numerical solutions to Eqs. (27) and (28) and corresponding simulation results. We set EV = 10−3, N = 50, and defined all
energies in units of kBT = 1.0. The error bars are the standard deviations in k and m computed from Eqs. (29) and (31). In (a), E0 = 4.15 and
� = 5.75, and the system is type I. In (b), E0 = 9.05 and � = 4.65, and the system is of indeterminate type. In (c), E0 = 14.00 and � = 3.75,
and the system is type II. The 〈k〉 and 〈m〉 numerical solutions are represented by solid green and dotted orange curves, respectively. The 〈k〉
and 〈m〉 simulation results are denoted by “•” and “×,” respectively, and each point represents the average of 50 simulations where, for each
simulation, the last 600 time steps of 30 000 were used to compute the ensemble average (see Sec. 5 of the Supplemental Material [16] for
details). Vertical lines correspond to Tc (black dotted), TI (blue dash-dotted), and TII (red solid). For type I systems, Tc 	 TI, and for type II
systems, Tc 	 TII. In type I systems, partially dimerized states can have mostly correct contacts, and in type II systems partially dimerized
states always have mostly incorrect contacts.

properties outlined for Fig. 5(b) become less accurate descrip-
tions of the original system, for lower values of 2N .

The solid straight lines are the parameter space expressions
of the conditions T = TI, T = TII, and TI = TII given the
definitions in Eqs. (42) and (44). If we take a system at a
certain temperature to be defined by a point in Figs. 5(a)
or 5(b), then decreasing the system temperature brings the
point closer to region A. Because the region boundaries are
themselves temperature dependent, the sizes and extents of
the regions also change as we change the system temper-

ature. See Fig. S1 in Sec. 6 of the Supplemental Material
[16] for a depiction of how the plots in Fig. 5 change as
we decrease the value of kBT . We define a system as type
I or type II according to whether decreasing the system
temperature leads the point representing the system to enter
region A (fully correct dimerization region) at a point at
which either the TI or TII line can approximate the region A
boundary. The temperatures TI and TII must be sufficiently
distinct for this categorization to be nonambiguous and so
the grey regions in both plots of Fig. 5 define approximate

FIG. 5. Parameter space regimes of dimer system. In (a), we set EV = 10−3 and N = 50, and in (b), we set E0 = 14.00 and � = 3.45;
in both (a) and (b), we set kBT = 1.0. Each region is defined by solutions to Eqs. (27) and (28) satisfying the following: (A) fully correct
dimerization [Eq. (41)]; (B) nearly complete dimerization with mostly correct contacts [〈k〉/N > 0.95; 〈m〉/〈k〉 > 0.5; 〈m〉 �= 〈k〉]; (C) partial
dimerization with mostly correct contacts [0.05 < 〈k〉/N < 0.95; 〈m〉/〈k〉 > 0.5]; (D) negligible dimerization [〈k〉/N < 0.05]; (E) partial
dimerization with mostly incorrect contacts [0.05 < 〈k〉/N < 0.95; 〈m〉/〈k〉 < 0.5]; (F) nearly complete dimerization with mostly incorrect
contacts [〈k〉/N > 0.95; 〈m〉/〈k〉 < 0.5]. The curve bounding region A in (a) and (b) is, respectively, the function β�(βE0) and the function
2N (V/λ3

0) found from analytic solutions to Eq. (40). The solid lines are functions computed from their respectively labeled conditions. The
grey diagonal strip in (a) and (b) defines a region in which the system type is indeterminate; above or below the strip, the system is more clearly
of type I or type II. The markers �, +, and � correspond, respectively, to (a)–(c) in Fig. 4 at kBT = 1.0. Only type I systems can be partially
dimerized and mostly correct while only type II systems can be nearly completely dimerized and mostly incorrect.
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regions where TI 	 TII and hence where the system type is
indeterminate.

In the parameter space plots, we define six regimes that an
arbitrary dimer system can be in at a given temperature:

(A) Fully correct dimerization: All monomers exist in
dimers and all dimers are correct; Eq. (41), 1 − 1/2N <

〈k〉/N = 〈m〉/N < 1.
(B) Nearly complete dimerization with mostly correct con-

tacts: Almost all the monomers exist in dimers, and most of
these dimers are correct; 〈k〉/N > 0.95; 〈m〉/〈k〉 > 0.5; 〈k〉 �=
〈m〉.

(C) Partial dimerization with mostly correct contacts:
Monomers have only partially dimerized, and most of these
dimers are correct; 0.05 < 〈k〉/N < 0.95; 〈m〉/〈k〉 > 0.5.

(D) Negligible dimerization: Few of the monomers exist
in dimers; 〈k〉/N < 0.05.

(E) Partial dimerization with mostly incorrect contacts:
Monomers have only partially dimerized, and most of these
dimers are incorrect; 0.05 < 〈k〉/N < 0.95; 〈m〉/〈k〉 < 0.5.

(F) Nearly complete dimerization with mostly incorrect
contacts: Almost all the monomers exist in dimers, and most
of these dimers are incorrect. 〈k〉/N > 0.95; 〈m〉/〈k〉 < 0.5.

The dotted line boundaries in Figs. 5(a) and 5(b) are
defined by somewhat arbitrary limiting values for 〈k〉 and
〈m〉 (e.g., 〈k〉/N < 0.10 and 〈k〉/N > 0.90 could respectively
have been used to define negligible and nearly complete
dimerization), and thus transitioning across such boundaries
occurs smoothly as “crossover,” rather than as “phase,” transi-
tions. However, the boundary surrounding region A is unam-
biguously defined by Eq. (40), and transitioning across this
boundary by decreasing T below Tc fixes 〈m〉 at the value
given in Eq. (41). For type I systems, this T = Tc transition
occurs smoothly [Fig. 4(a)], but for type II systems the tran-
sition occurs sharply [Fig. 4(c)] corresponding to an apparent
discontinuity in ∂〈m〉/∂T and thus suggesting the appearance
of a phase transition. However, this transition occurs at an N
dependent temperature that goes to zero in the thermodynamic
limit, and thus does not fulfill the standard definition of a
phase transition.

Echoing an assertion made in the previous section,
Figs. 5(a) and 5(b) show that type I and type II systems exhibit
regimes of behavior exclusive to each type. When monomers
are partially dimerized in a type I system, most of the dimers
can consist of correct contacts, while when monomers are
partially dimerized in a type II system, most of these dimers
always consist of incorrect contacts.

These parameter space plots allow us to immediately see a
few properties of the dimer system not evident in the solution
plots. First, from the regime definitions and the line repre-
senting the T = TII condition in both Figs. 5(a) and 5(b), we
see that β� > ln(2N ) (or, equivalently, 2N < eβ�) appears
to be a sufficient but not necessary condition for an arbitrary
system’s dimers to be mostly composed of correct dimers.
Therefore, the dimers in a system are mostly correct, if the
number of distinct monomers in the system is less than eβ�.

Second, in Fig. 5(a) we see the expected result that the
system only enters the fully correct dimerization regime when
� � kBT and E0 � kBT . This makes qualitative sense be-
cause a value of E0 much larger than the energy scale of

thermal fluctuations is needed for dimers to be able to form,
and, similarly, a large value of � ensures that correct dimers
are privileged over incorrect dimers.

However, in Fig. 5(b) we have a possibly unexpected result:
It is only the lower left corner of the 2N − V/λ3

0 parameter
space that contains the fully correct dimerization regime. This
suggests that it is the absolute values of both particle number
and volume, rather than just their ratio encoded in number
density, that determine whether fully correct dimerization
is possible. This result might be unexpected since reaction
equations similar to those defining our dimer system [i.e.,
similar to Eq. (1)] are often studied by considering reactant
number densities in the form of concentrations. Experience
with such analyses leads one to expect that limits on number
density are the only relevant criteria for constraining whether
correct dimerization is achieved. But now we see that a
statistical mechanics analysis suggests otherwise. We interpret
this result in the next section.

V. INEQUALITIES FOR ASSEMBLY AND TYPE

Having constructed the parameter spaces in Fig. 5, we now
pursue two goals: A qualitative interpretation of the analytical
conditions constraining the fully correct dimerization regime,
and a more precise way to define the separation between type
I and type II systems. We pursue the first goal by finding
necessary but not sufficient conditions for a system to be in the
fully correct dimerization region of parameter space and then
by using these conditions to motivate the more conceptual
labels of “search limited” and “combinatorics limited” for
type I and type II systems, respectively. We pursue the second
goal by deriving and interpreting necessary but not sufficient
conditions for a system to be of type I.

A. Limits of fully correct dimerization

In Figs. 5(a) and 5(b), region A defines the parameter space
for which a dimer system is in the regime of fully correct
dimerization. A necessary and sufficient condition for the
system to be in this regime is T < Tc where Tc is given by
the solution to Eq. (40). The complexity of Eq. (40) makes
this condition difficult to interpret physically, but the solid
lines in the parameter space plots, corresponding to T = TI

and T = TII, allow us to state two necessary but not sufficient
conditions that have clearer physical interpretations.

From Eqs. (40), (42), and (44), we can show that Tc <

TI, TII. Thus, a necessary condition for the achievement of the
fully correct dimerization regime is that T < TI and T < TII.
Using Eqs. (42) and (44) to translate the T < TI and T <

TII inequalities into physical limits on volume and particle
number, we find that they correspond, respectively, to

NV <
√

2 λ3
0 eβ(E0+�), (46)

and

2N < eβ�, (47)

where, consistent with the N � 1 limit, we dropped the
O(N−1) term in Eq. (42). In Fig. 5(a), Eqs. (46) and (47) are
satisfied when a system exists to the right of the T = TI line
and above the T = TII line. In Fig. 5(b), Eqs. (46) and (47)
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are satisfied when a system exists to the left of the
T = TI line and below the T = TII line. Since the fully correct
dimerization region exists within these limits in both figures,
Eqs. (46) and (47) are necessary but not sufficient conditions
for fully correct dimerization. Also, although they both con-
tain the parameter N , Eqs. (46) and (47) are independent of
one another.

A system only satisfies Eq. (46) if it has binding energies
E0 and � which are strong enough for all 2N monomers to
find and bind to one another in the volume V . We thus term
Eq. (46) a “search limiting” condition for the dimer system.
A system only satisfies Eq. (47) if it has an energy advan-
tage � which is strong enough that the completely correct
configuration of dimers is thermodynamically preferred over
all the other combinatorially more numerous incorrect con-
figurations. We thus term Eq. (47) a “combinatorics limiting”
condition.

We can think of type I systems as being “search lim-
ited” since in such systems � is sufficiently large that cor-
rect dimers can overcome their combinatorial disadvantage,
and, therefore, the primary limiting factor in creating correct
dimers is the ability of the relevant monomers to find one
another, i.e., satisfying Eq. (46). Similarly, we can think
of type II systems as being “combinatorics limited” since
in such systems E0 is sufficiently large that monomers can
find one another, and the primary limiting factor in creating
correct dimers is the need to overcome their combinatorial
disadvantage, i.e., satisfying Eq. (47).

It may seem strange that the inequality Eq. (46) is said to
define the search limits of dimer assembly and yet it makes
no reference to the number density of the system. Shouldn’t
high number density be a requirement for monomers to be
able to find one another in their volume? The answer depends
on the properties of the monomers comprising the system.
Number density is mainly relevant if the dimers formed from
associating monomers are all identical, and the monomers
exist in multiple copies which are uniformly distributed in the
constituent volume. In such cases, dimerization occurs if the
monomers can find one another, and since the reactants are
uniformly distributed throughout their volume, the only factor
constraining whether they are able to find one another is how
many of these monomers are in a particular region of their
larger space. Thus, only density is relevant.

But for our dimer model, each of the 2N monomers exists
as a single copy, and all of the dimers are distinct. In order for
the system to assume the fully correct dimerization regime,
each monomer must ignore the 2N − 2 other monomers that
are not its optimal binding partner and find the optimal partner
in the volume V . Increasing the number of distinct monomers
makes a successful search less likely since there are more
spurious potential binding partners, as does increasing the
system volume since there is a larger space to search within.
Therefore, both N and V should have upper limit constraints.
However, why is it their product NV that has an upper limit
constraint given in Eq. (46)? One answer is that particle
number and volume are not independently constrained for a
successful search. For example, a large volume and a small
number of particles are just as harmful to a successful search
as are a small volume and a large number of particles; in both
cases a monomer still has to wade through a large number of

various states—defined by possible position states or potential
monomer binding partners—before it finds its optimal partner.
Therefore the search limits on particle number become more
stringent as the volume increases as do the search limits on
volume when the particle number increases. Thus, it is their
product which is constrained.

B. Limits of type I system

According to Eq. (45) we categorized a dimer system as
type I or type II contingent on how close Tc was to either TI

or TII. This definition was necessarily approximate since the
distinction between these two system types is a qualitative one
which smoothly disappears as our system moves closer to the
TI = TII lines in Figs. 5(a) and 5(b). But because of how TI

and TII relate to one another in the two system types, we can
rephrase the definition without explicit reference to how either
relates to Tc.

When TI and TII are not approximately equal, the critical
temperature Tc ends up being well approximated by the lower
of the two values as is seen in Figs. 4(a) and 4(c). For type I
systems, the lower value is always TI and for type II systems
the lower value is TII. Therefore, another way to define the
system types is as

system type =
{

type I for TI < TII,

type II for TI > TII,
(48)

where this definition is only unambiguous if TI and TII are
not approximately equal. It is this phrase “not approximately
equal” that makes this alternative definition, like the original
definition Eq. (45), a qualitative one. However, this definition
can be used as a guide to write a necessary but not sufficient
condition for whether a system is of a particular type.

Equation (48) states that in order for a system to be of
type I, we must have TI < TII. This inequality alone is a
necessary but not sufficient condition for the system to be of
type I. For example, Fig. 4 satisfies TI < TII, but its system
type is ambiguous. Still, we can consider how this condition
constrains the parameter space for this system. We rewrite
this inequality in terms of a limit on the number of distinct
monomers in the system. Using Eqs. (42) and (44) in TI < TII

and noting that, by the monotonicity property of the Lambert
W function, if W0(X ) > k, then X > kek , we can show that
TI < TII implies

2N < exp

[
3�

2E0
W0

(
E0

3EV

)]
. (49)

Equation (49) corresponds to the region in Fig. 5(b) that
is below the TI = TII line. Thus, if a dimer system can be
categorized as type I, then the number of distinct monomers it
contains must satisfy Eq. (49).

Equation (49) is equivalent to a bare statement of the
TI < TII condition. However, unlike the TI < TII condition,
it presents constraints on 2N in terms of a closed form
expression and is thus easier to interpret. Taking � � E0 in
Eq. (49) leads to a lower maximum number of particles for
a type I system. This makes sense because a smaller energy
advantage for correct contacts means the system must have
a smaller number of distinct monomers in order to avoid the
prevalence of incorrect contacts which would push the system
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to be type II. For large volumes V , Eq. (49) indicates that the
maximum value of 2N becomes proportionally larger. This
result is consistent with the fact that increasing N decreases
TII: Since it is the positive difference between TI and TII that
leads a system to be characterized as type I, a decrease in TI

through an increase in V can be paired with a decrease in TII

through an increase in N , with the system still maintaining its
type. It is true that increasing N also decreases TI, but because
W0(x) varies more slowly than ln(x) this decrease occurs more
slowly than the corresponding decrease in TII.

Equation (49) is a conceptually and analytically simple
criterion for determining whether a dimer system can be
categorized as type I. Satisfying Eq. (49) does not guarantee
that the system is type I, but failing to satisfy it guarantees that
the system is not type I. In the next section, we will use this
criterion to determine whether various biomolecular systems
have biophysical properties consistent with those of type I
dimer systems.

VI. BIOMOLECULAR SYSTEMS

In this section we consider three systems whose properties
approximately match the assumptions underlying the nongen-
dered or the gendered dimer models, the latter of which is out-
lined in the Appendix: The assembly of ssDNA into dsDNA,
the specific and nonspecific interactions between transcription
factors and DNA, and the dimerization of distinguishable
monomeric proteins into dimers (Fig. 1).

There are some important differences between the model’s
assumptions and the properties of these real systems.

First, we assumed that each monomer species exists in
a single copy in the system. This assumption clearly does
not mirror the properties of real biomolecular systems which
often have multiple copies, with different copy numbers, for
important biomolecules. We take our model to approximate
the behavior of systems with many different monomers but
where the copy numbers of each monomer are sufficiently
similar and are uniformly distributed that we can consider
a small region of the system to have a single copy of each
monomer type. In Sec. VIII we will state a formulation of
the nongendered problem which better takes into account
differences in particle number, and we will mention issues
relevant to the solution.

Second, in developing the dimer model, we have employed
the dilute-solution approximation throughout in which the
monomers and dimers are presumed to be pointlike and nonin-
teracting. But, in real biomolecular systems, one would expect
volume exclusion and intermolecular interactions to lead to
deviations from ideal behavior. In Sec. VIII we will comment
on how we can make up for this limitation by extending the
model, but for the current analysis we just acknowledge that
the model only approximates the interaction properties of the
monomers and dimers in the proposed real systems.

Third, our model uses only two parameters to define the
binding energy matrix of 2N distinct monomers, whereas
actual systems of distinct interacting proteins or strands of
DNA would have more complicated binding interactions even
if such interactions could be cleanly divided into correct and
incorrect bindings. Consequently, in order to frame the prop-
erties of biomolecular systems in terms of model parameters,

we use average energy scales representative of the systems of
interest as approximations for E0 and �.

Finally, in real biomolecular dimer systems, there are often
rotational and vibrational contributions to entropy [22] which,
in a more complete theoretical treatment, would have been
accounted for in our dimer partition function Eq. (9). Because
our model only takes into account the translational entropy
of the dimers, when given biophysical data on binding free
energies, we will take E0 and E0 + � to be approximated
by the provided binding free energies minus an estimated
translational entropy contribution to those free energies. In
this sense, the binding energy parameters of our model are
“effective” binding energies obtained by averaging over the
various unaccounted for internal microstates of the dimer, but
are not directly associated with a measurable quantity. Care-
fully incorporating rotational and vibrational contributions
into the partition function Eq. (9) would lead to equilibrium
conditions with different temperature dependencies than those
in Eqs. (27) and (28), and thus different conditions for type
I and type II dimer systems. Thus taking E0 and E0 + � to
approximate these unaccounted for entropies amounts to an
additional approximation in which we are ignoring the tem-
perature dependence of these entropies. All binding energy
calculations are found in the Supplemental Material [16].

In the subsequent sections, we will have two main goals:
First, to use Eqs. (46) and (47) and estimates of biophysical
parameters for various biomolecular systems to determine
how the diversity of monomers in the system would need
to be constrained in order for fully correct dimerization to
be accessible at physiological temperatures. Second, to deter-
mine whether the system is a type I (search limited) or type
II (combinatorics limited) dimer system, and thus whether
partially dimerized systems are dominated by correct contacts
in these systems. Completing the first goal provides us with
the information for the second goal: According to Fig. 5(b), if
a system satisfies Eq. (47) but not Eq. (46), then the system
is of type I, but if a system satisfies Eq. (46) but not Eq. (47)
then the system is of type II. We will also use Eq. (49) to affirm
these system categorizations.

A. ssDNA-ssDNA interactions

Within a cell, dsDNA never spontaneously separates into
ssDNA, but in polymerase chain reactions (PCR), solutions
containing copies of a single dsDNA sequence are heated
to high enough temperatures that the strands can separate.
In a prepared system, consider having, instead of multiple
copies of a single sequence of dsDNA as in PCR, N different
sequences of dsDNA which, when heated to high enough tem-
peratures, separate into N ssDNA segments and N associated
complementary segments [Fig. 1(a)].

This system is contrived from a biological perspective
but provides a simple playground in which to study the
predictions of the dimer model. What insights do the physical
properties of the nongendered dimer model provide for such
a system of ssDNA and dsDNA? One relevant question is
whether such a system is a type I or a type II dimer system.

Take a single ssDNA segment to have 20-nucleotide bases,
a length which is within the range of standard lengths of
primers in a typical PCR [23]. In the language of the model,
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each αk for k = 1, . . . , N , represents one ssDNA fragment and
αN+k represents the corresponding complementary fragment.
Because each αk is presumed distinct, we require that none of
the ssDNA is self-complementary, and hence each is distinct
from its complementary strand. We will assume binding oc-
curs in an all-or-nothing fashion and that the bubbles that exist
in real strands [24] are not present. The reaction equation for
this system is

ssDNAk + ssDNAcomp,k −⇀↽− dsDNAk, (50)

where k = 1, . . . , N .
Since only complementary ssDNA fragments can form

dsDNA, there is no binding energy favorability between non-
complementary ssDNAs, and so we can take E0 = 0. From
this condition alone, Fig. 5(a) suggests that such a system of
interacting ssDNA is trivially of type I, since a nonzero value
of � and a zero value of E0 would place the system well above
the TI = TII line.

Still, we can consider what estimates for binding energies
imply about the number of distinct ssDNA that can exist in
such a system. A representative binding free energy between
complementary strands was found as follows: We randomly
generated 106 20-base sequences of ssDNA (where the bases
A, G, T, and C were equally probable), computed the binding
free energy for each with its corresponding complement,
and averaged over all free energies. We used an experimen-
tally calibrated and cross-referenced formula given in [25]
to compute these free energies and assumed a 50-mM Na+

surrounding solution (see the Supplemental Material [16] for
implementation details). From these free energies we we able
to estimate a binding energy parameter of � 	 31.5 kcal/mol.
From the fact that a nucleotide base pair has a mass of about
650 daltons, we can take the mass of a 20-base ssDNA to be
m0 = 6.5 kDa [26]. We take our system to be at temperature
T = 310.15 K.

With these parameters Eq. (46) and Eq. (47) yield, respec-
tively,

(NV )max = 4.2 × 104 μm3, (2N )max = 1.6 × 1022. (51)

Since a 20-base pair ssDNA can have at most 420 ≈ 1012

distinct sequences, the combinatorial condition on (N )max

is automatically satisfied, and it is thus the search condi-
tion (NV )max which limits the achievement of fully correct
dimerization in this conjectured system. Moreover, taking
E0 → 0 in the necessary condition Eq. (49) yields 2N <

exp(�/2E0) ≈ exp(1013) which is practically infinite and
more than satisfied for the possible values of N in the system.
Therefore, this system is indeed of type I, and is a search-
limited dimer system.

B. Transcription factor-DNA interactions

Transcription factors (TFs) are proteins that bind to DNA
and regulate a gene’s transcription into mRNA and thus how
much protein is produced from that gene [27]. Given their
importance in gene regulation networks and the specificity of
their functions, TFs must attach to precise regions of DNA
which they select out of a combinatorial sea of other binding
regions [Fig. 1(b)]. A TF finding its intended DNA target is

FIG. 6. Example microstate of the gendered system with 2N =
30 subunits. We represent the monomers of either gender as filled or
unfilled half circles. Filled half circles can only bind to unfilled half
circles. Correct dimers consist of binding k to k and have binding
energy −(E0 + �). All other dimers are incorrect and have binding
energy −E0. This microstate has four correct dimers (in blue), four
incorrect dimers (in yellow), and 14 monomers (in grey). The total
binding energy for this microstate is −(8E0 + 4�). For pictorial
clarity, the figure represents monomers as half circles, but monomers
are taken to be point particles in the model.

said to bind to it “specifically” while bindings to all other
targets are considered “nonspecific” [28].

Let’s say we have N different TFs in a system together with
their corresponding N DNA binding sites. The association and
dissociation reaction for this system can be written as

TFk + DNA� −⇀↽− (TF-DNA)k�, (52)

where k, � = 1, . . . , N . We want to use the biophysical param-
eters defining TF-DNA systems to consider what our model
states about the diversity constraints of these systems. First,
a system of interacting TFs and DNA sites is gendered be-
cause there are two types of interacting units and because we
take the interactions to occur between respective members of
the two types rather than within the same type (See Fig. 6
for an example of a gendered dimer system microstate). Also,
since the DNA strand is fixed relative to the TFs, the system
is more like a system of free monomers interacting with
fixed binding sites rather than a system of dimer forming
monomers. Consequently, the reduced mass μ of the dimers
becomes the mass of the motile monomer (i.e., the mass of the
TF), and the qualitative picture we associate with the system
is more akin to Fig. 7 in the Appendix than to Fig. 6.

In [28], Jacobsen lists 12 proteins (including endonucle-
ases, repressors, and activators) with their respective protein-
DNA association constants for specific and nonspecific con-
tacts under various conditions. Converting these association
constants to binding free energies, and subtracting transla-
tional entropies to estimate our binding energy parameters E0

and �, we find E0 	 22.9 kcal/mol and � 	 6.4 kcal/mol.
We take the mass of a transcription factor monomer to be
mTF 	 64 kDa, a typical protein mass [29], and we take T =
310.15 K.

From these parameter values, we find that gendered
analogs of Eqs. (46) and (47) [given in Eqs. (A28) and (A29),
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respectively] yield

(NV )max = 2.7 μm3, (N )max = 3.2 × 104. (53)

Both of these results establish limits on the maximum di-
versity of TFs needed for fully correct dimerization to be
achievable at physiological temperatures, but the condition
that establishes more stringent limits for a particular volume
is what ultimately defines whether the system is of type I or
type II. The authors of [30] estimate that there are about N =
3 × 102 different TFs in E. coli, a value which, for the E. coli
volume 1 μm3, satisfies (Nmax) but not (NV )max. Thus, the
(NV )max limit, derived from T < TI, establishes the stronger
limit on TF diversity for a 1 μm3 volume system, and we can
conclude that this system is a type I, or search-limited, dimer
system. Moreover, given our parameter values, we find that
the gendered analog of Eq. (49) [given in Eq. (A30)] yields
N � 105, which is well satisfied for the estimate N ∼ 103, and
thus such a system satisfies the necessary condition to be of
type I.

The fact that (N )max is satisfied but not (NV )max addition-
ally means that the system is located below the T = TII line
in a plot like Fig. 5(b), and thus the binding energies for
the system are large enough that, at equilibrium, most of the
TF-DNA bindings are correct (i.e., specific) bindings. Such
a claim might seem strange given what is known about how
TFs bind to DNA. TFs find their correct bindings sites through
a two part process in which they first bind nonspecifically to
DNA and then slide along the DNA molecule. In the process
of searching for its specific binding site, the TF spends most of
its time nonspecifically bound to DNA [31]. This fact seems to
contradict our claim that a TF-DNA system is dominated by
specific rather than nonspecific contacts. However, the TF’s
search for its correct binding site is a decidedly nonequilib-
rium process while our result is an equilibrium one. What our
result suggests is that if the relaxation to equilibrium was not
for whatever reason too slow for cellular function, TFs would
still have sufficiently strong binding to their specific sites
that they could successfully wade through the combinatorial
sea of incorrect binding sites and find their correct ones. In
other words, although real TF-DNA systems have evolved to
not make use of equilibrium self-assembly, their biophysical
properties appear to still afford them the ability to do so.

C. Protein-protein interactions

Although proteins are the ostensible conclusion of the cen-
tral dogma of molecular biology, the basic unit of life is much
more complex than a bag of freely diffusing proteins [32].
Cells have highly organized internal structures with some
proteins existing freely within the cramped environment of the
cytoplasm while other proteins function alongside organelles
in complex-machine-like interaction networks necessary for
cellular metabolism or replication. But, while a “bag of pro-
teins” is not a faithful metaphor of the cell, it still serves as
a useful model for studying the constraints of protein-protein
interactions.

Say we have a solution of 2N distinct monomeric proteins
each of which, through a functional interaction, typically
forms a heterodimer (and has the lowest binding energy) with
one other protein, but also has the ability to bind to the other

proteins through nonfunctional interactions [Fig. 1(c)]. In
terms of the dimer model, functional interactions correspond
to correct dimers and nonfunctional interactions correspond
to incorrect dimers. Whether a nongendered or a gendered
dimer model is more appropriate when describing proteins
depends on the interaction properties of the proteins involved.
However, the two classes of models have sufficiently similar
quantitative properties that we can choose the nongendered
model as representative of both. The reaction equation for
such a (nongendered) system would be

proteink + protein�
−⇀↽− (protein-protein)k�, (54)

where k, � = 1, . . . , N .
We consider again the question we asked for the previous

biophysical systems: Given the approximate range of binding
energies for protein dimers, are such protein-protein interac-
tions systems of type I or type II?

The authors of [33] provide a downloadable protein-protein
interaction data set consisting of a diverse collection of
144 protein complexes including antibody-inhibitor, enzyme-
inhibitor, and G protein complexes . From this data set we can
estimate an average binding free energy for functional (i.e.,
correct) protein complexes. An estimate of the binding free
energy for nonfunctional complexes (i.e., incorrect protein
interactions) is provided in [11] by comparing the results of
yeast 2-hybrid experiments across two data sets. Extracting
our binding energy parameters E0 and � from these data sets,
we find E0 	 18.9 kcal/mol and � 	 7.7 kcal/mol. We will
take the mass of a monomer in this system to be the typical
protein mass m0 	 64 kDa [29], and we assume a system
temperature of T = 310.15 K.

With these parameter values, Eqs. (46) and (47) give us,
respectively,

(NV )max = 4.7 × 10−1 μm3, (2N )max = 2.7 × 105, (55)

indicating that for a volume of 1 μm3, the search-limiting
constraint Eq. (46) provides a stronger limit on the number
of different proteins in the system. Estimates of the number of
different proteins in E. coli put the number to be on order of
N ∼ 103 [34,35], a result which satisfies the (N )max condition
but not the (NV )max condition. Given the calculated parameter
values, we can check that N ∼ 103 is more than three orders
of magnitude less than the maximum computed from Eq. (49),
and thus this system indeed satisfies the necessary condition
to be of type I. Therefore, like systems of interacting TFs and
DNA sites, systems of interacting proteins in an E. coli volume
appear to be type I, search-limited, dimer systems and thus
have functional binding energies which are strong enough to
overcome the combinatorial disadvantage of correct contacts
at physiological temperatures.

Actual protein-protein interaction systems have numer-
ous features not present in the model. Aside from the
fact that proteins exist in multiple copies in real cells,
we know that not all protein dimers are heterodimers (or
even interact most strongly as heterodimers [36]); not all
protein dimers can spontaneously dissociate into their con-
stituent monomers (e.g., HIV-1 reverse transcriptase); not all
constituent monomers are stable by themselves [37]; and
not all proteins form dimers since many protein complexes
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important to cellular function (e.g., lac repressor) contain
more than two constituent proteins.

But working within the constraints of the model, the fact
that the estimated diversity of proteins in E. coli is much lower
than (N )max suggests that these protein systems have energy
advantages for correct contacts that are larger than what would
be marginally necessary to privilege those correct contacts in
an equilibrium system.

VII. DISCUSSION AND INTERPRETATION

This work has five main analytical results: The exact
partition function for dimer assembly, Eq. (15); the associated
equilibrium conditions, Eqs. (27) and (28); the temperature
condition for fully correct dimerization, Eq. (40); the ana-
lytical definition of the two different system types, Eq. (45);
the necessary but not sufficient inequalities for fully correct
dimerization, Eqs. (46) and (47); the necessary but not suffi-
cient condition for the system to be of type I, Eq. (49).

The final two results allow us to qualitatively charac-
terize two different system types. Contingent on a dimer
system’s binding energy, particle number, and volume pa-
rameters it can be categorized as type I/search-limited, type
II/combinatorics-limited, or indeterminate. In search-limited
systems, the energy advantage for correct contacts is large
enough to overcome the combinatorial disadvantage of such
contacts, and the achievement of the fully correct dimerization
regime is more constrained by the ability of the correct
monomers to find one another in their surrounding volume. In
combinatorics-limited systems, the opposite is the case with
binding energies being large enough for the monomers to find
one another, and achieving fully correct dimerization more
constrained by the ability of the correct dimers to overcome
their combinatorial disadvantage. Indeterminate systems have
properties that cannot be cleanly distinguished as being either
search limited or combinatorics limited.

In terms of their binding trends, the qualitative difference
between the two main types is that search-limited systems can
be partially dimerized with most of their dimers consisting of
correct contacts [Fig. 4(a)], but when combinatorics-limited
systems are partially dimerized, most of the dimers consist of
incorrect contacts [Fig. 4(c)]. Thus being able to categorize
a dimer system as either type I or II allows us to determine
whether there can be mostly correct dimers in the system
when the monomers are only partially dimerized.

Applying these results to the biophysical systems that
motivated the model (Fig. 1)—and after listing numerous
caveats—we found that all such systems appear to be search-
limited systems (Table I). Per our previous discussion, this
means that the fully correct dimerization regime in these
systems is more constrained by the ability of monomers to
find one another in their constituent volumes than by the
need to overcome the combinatorial disadvantage of correct
dimers, and that these systems are capable of having partially
dimerized states that are dominated by correct contacts.

The latter result might appear obvious: Of course we
should expect biomolecular systems with functional interac-
tions to exhibit binding energies that privilege those functional
interactions over competing ones. However, in most biophys-
ical analyses of nonfunctional interactions (e.g., [10,11,13])
emphasis is placed on how binding energies must be large
enough to out compete nonfunctional interactions, and there
is rarely any mention of how system size (in terms of vol-
ume) affects correct binding. But the interpretation behind
the search-limiting condition Eq. (46) is that system size also
constrains the ability of monomers to find one another and is
just as relevant as binding energies in limiting nonfunctional
interactions.

This interpretation leads us to a second interesting result:
Eq. (46) indicates that in achieving the fully correct dimeriza-
tion regime, it is the product of particle number and volume,
rather than their ratio encoded in density, that is constrained.
This result reflects the fact that each of the monomers in a
dimer system must find its optimal binding partner in the
constituent volume, a task which is more difficult when said
volume is large. This is because the quantity 2N serves two
roles in this model; it defines the number of monomers in the
system, but, since each monomer is distinct, it also defines
the number of monomer species. Thus increasing N in-
creases the density of the system, leading to more in-
teractions between monomers for a given volume, but it
also increases the number of different interacting monomer
types and makes it more difficult for a single monomer
to find its one other optimal binding partner. Similarly,
increasing the volume V increases the number of posi-
tion states a monomer must search through to find its
optimal binding partner and makes such a search more
difficult. Importantly, these effects are not independent.
Equation (46) indicates that the search condition can be
violated just as well for a large number of different monomers

TABLE I. The energy and mass parameters and associated limits from Eqs. (46), (47), and (49) for various biomolecular systems at
T = 310.15 K. The ssDNA has 20 bases. Because TF-DNA interactions constitute a gendered dimer system, we used Eqs. (A28)– (A30) to
compute the relevant quantities in the TF-DNA row. In calculating Eq. (49) [or Eq. (A30)], we assumed a volume V = 1 μm3. The fourth
column contains real upper limits on the monomer diversity of the associated systems. We see that although the values of Nreal exist below
(N )max for each biomolecular system, Nreal exceeds (NV )max for a volume of 1 μm3. Together, these two comparisons indicate that all of these
systems are type I (i.e., search-limited) dimer systems for a volume of 1 μm3. Further affirming this label is that Nreal satisfies the type I
necessary condition Eq. (49) for each system. Therefore, these biomolecular systems would have equilibrium curves for 〈k〉 and 〈m〉 more akin
to Fig. 4(a) than to Fig. 4(b) or Fig. 4(c).

System m0 (kDa) E0 (kcal/mol) � (kcal/mol) Nreal (NV )max (μm3) (2N )max RHS of Eq. (49)

ssDNA-ssDNA 6.5 0 31.5 ∼1012 ∼104 ∼1022 ∼ exp(1013)
TF-DNA 64 22.9 6.4 ∼102 ∼1 ∼104 ∼105

Protein-protein 64 18.9 7.7 ∼103 ∼10−1 ∼105 ∼107
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in a small volume as for a small number of monomers in a
large volume. The “dance hall problem” discussed in Sec. II B
is useful in lending an intuitive picture to the competing
relevance of N and V in achieving fully correct dimerization:
It is easiest for a person to reach his or her original dance
partner if both the number of other dancers and the volume of
the hall is small. Increase either one and the task of reaching
one’s partner becomes more difficult.

VIII. LIMITATIONS AND EXTENSIONS

To simplify our study of dimer self-assembly, we made a
number of assumptions which limited the generality of the
model and which thus point to ways to extend it.

First, we assumed that there was only a single copy of
each unique monomer in the system. This assumption greatly
simplifies the combinatorial problem at the heart of the model,
but does not match the properties of real biomolecular systems
which always have many different monomer species each with
a particular number of copies. However, one could consider a
system where monomer species occur in multiple copies, but
for which all monomers have the same copy number. If these
copies are uniformly distributed throughout the system, then
for a small region, one can take the equilibrium dynamics of
the system to be defined by the consideration of only a single
copy of each species.

To move beyond such a heuristic argument would require
a more general formulation of the problem. For example,
the nongendered model should include 2N unique monomers
α1, . . . , α2N where an αk monomer has nk copies in the
system. For this more general system, one would need to
determine the best way to model interactions between the
same species and also how to consider mismatches between
the number of possible correct partners and the number of
available monomers in the system. Currently, it is not clear
what is the best route towards attacking this more general
problem.

For tractability, we did not give the monomers and dimers
any substructure and instead defined their translational ther-
modynamics merely by the standard ideal-gas partition func-
tion Eq. (6). In protein systems, for example, we should
expect the monomers and dimers to have nonzero moments
of inertia and the dimers to have vibrational properties, facts
we can incorporate into the preliminary partition function
Eq. (9) by correcting the quantities raised to the power of k
and m with the appropriate rotational and vibrational partition
functions. The principal effect of these contributions would be
to give stronger temperature dependencies to 〈k〉 and 〈m〉. For
example, taking the monomers to be spherical and the dimers
to be vibrationless linear molecules with moments of inertia
I , the factor of λ3

0/V ∼ T −3/2 in Eq. (27) would be replaced
with

λ3
0�/V T ∼ T −5/2, (56)

where � = h̄2/2IkB. It is apparent that for protein systems
such incorporations are important because rotational and vi-
brational contributions to entropy have non-negligible con-
tributions to the “price of lost freedom” [22] experienced by
monomers when they associate into dimers. However, it is not

clear whether these incorporations would remove the sharp
fall off in 〈m〉 exhibited by type II systems.

Also, by giving the monomers and the dimers partition
functions of the form V/λ3

0, we assumed that they were
dimensionless particles which did not interact outside of their
bindings. Such an assumption is not correct for the aqueous,
and often crowded, solutions in which biomolecules actually
reside [38]. Thus, for better correspondence with real systems,
we should incorporate volume exclusion and interparticle
interactions into the model by replacing the ideal gas partition
function Eq. (6) with the appropriate first-order terms in a
Virial expansion [39].

Two other limitations of the model concern length and time
scales. Although the dimer model was able to capture some of
the combinatorial properties of self-assembly, more often (as
in the case of protein capsid or bilayer membrane assembly)
the phrase “self-assembly” refers to the spontaneous construc-
tion of macromolecular structures that are much larger than
their constituent parts [5]. Thus, generalizations of this model
that seek to provide more insight into the statistical physics
constraints of self-assembly would need to incorporate self-
assembly on a hierarchy of scales without sacrificing the
precision of the statistical physics treatment.

Second, since systems exhibiting self-assembly evolve
towards equilibrium (rather than being perennially perched
there), a mathematical model of the nonequilibrium properties
of this dimer system would make a more useful archetype
of self-assembly. Simulations are a good first step in this
direction as long as they properly model the transition-state
properties of assembly. To produce the simulations shown
in Fig. 4, we started all of our systems in the low-entropy
microstate of all correct dimers and used a nonphysical transi-
tion step in which dimers could switch constituent monomers
without dissociating. These unphysical choices were meant
to ensure that our system efficiently explored the state space
over our chosen simulation times. However, a more faithful
simulation of self-assembly would have the system begin
in a state of all monomers and would only allow monomer
dissociation and association as transition steps. Our prelim-
inary attempts to abide by these constraints reveal that for
certain parameter regimes the system falls prey to the common
self-assembly problem of “kinetic traps” [40] in which even
if the parameter space diagrams in Fig. 5 suggest that the
system is in the regime of fully correct dimerization, the
system can remain, for long simulation times, in a state of
only partially correct dimers. This kinetic trapping appears to
be most prevalent in type II/combinatorics-limited systems,
and reasonably disappears as E0 → 0, suggesting the type I vs
type II categorization can also be a qualitative categorization
for the likelihood of kinetic trapping, but a more precise
analytical argument would be preferred over these qualitative
observations.

IX. CONCLUSION

Motivated by the assembly of ssDNA into dsDNA, TF-
DNA binding, and protein-protein interactions, we built a sta-
tistical physics model in which systems of monomers can bind
together in correct or incorrect contacts. The model sought to
explore how the energy benefit of correct contacts must be
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balanced against their corresponding combinatorial penalty
in order for fully correct dimerization to still be possible.
The value in exploring such a question through statistical
physics rather than through the law of mass action is that the
finiteness of the partition function in statistical physics allows
us to respect—and hence more specifically account for—the
finite-number combinatorial arrangements that are crucial in
determining the possibility of self-assembly.
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APPENDIX: GENDERED SYSTEM

In Sec. II, we introduced our study of the self-assembly
of a dimer system by considering a collection of monomers
where each monomer could form a dimer with any other
monomer. In this sense, we labeled this system “nongendered”
to differentiate it from systems in which monomers have
constraints on the type of monomers to which they can bind.
In this section, we introduce a model with such constraints,
namely one in which there are two types of monomers and
each monomer can only form a dimer with the monomer of the
opposite type. The statistical physics analysis of this gendered
dimer system is very similar to that of the nongendered sys-
tem, so we focus on the major results rather than derivations.

1. Gendered partition function

Say that our system contains 2N distinguishable monomers
of two kinds. There are N distinguishable monomers labeled
β1, β2, . . . , βN each of which has mass mβ , and there are
N distinguishable monomers labeled α1, α2, . . . , αN each of
which has mass mα . The 2N total monomers exist in thermal
equilibrium at temperature T and in a volume V . Each α

monomer can bind to any β monomer (and vice versa), but α

monomers cannot bind to each other, and β monomers cannot
bind to each other. When monomer αk binds to monomer β�,
the two form the dimer (αk, β�), where the ordering within
the pair is not important. We define correct dimers as those
consisting of αk binding to βk for k = 1, . . . , N ; all other
dimers are considered incorrect. Thus there are N possible
correct dimers in this system and N (N − 1) possible incorrect
dimers. The binding energy for the dimers is given by

E ′(αm, βn) =
{−(E0 + �) if m = n,

−E0 if m �= n,
(A1)

indicating that correct dimers have a binding energy of
−(E0 + �) and incorrect dimers have a binding energy of
−E0, where E0,� > 0.

We assume that the monomers and dimers are point par-
ticles with no rotational or vibrational properties and that
apart from the binding energy, the monomers and the dimers

are free particles that do not interact with one another. An
example microstate for this system is shown in Fig. 6.

We want to compute the partition function for this system.
By an argument similar to that used to establish Eqs. (9) and
(10), we find that the partition function can be written as

Z ′
N (V, T, E0,�) =

N∑
j=0

j∑
�=0

(
N

�

)
bN−�, j−� eβ( jE0+��)

×
(

V

λ3
α

)N− j
(

V

λ3
β

)N− j(
V

λ3
αβ

) j

, (A2)

where λα, λβ , and λαβ are the thermal de Broglie wavelengths
of an α monomer, a β monomer, and an (α, β ) dimer respec-
tively. In the summations in Eq. (A2), j counts the number
of dimers in the system, and � counts the number of correct
dimers. The factor (

N

�

)
bN−�, j−� (A3)

is the answer to the following question:

N man-woman pairs enter a dance hall. All the pairs
separate, and people mingle with one another such that at
some later time, there are some man-woman pairs and there
are some men and women who are alone. At this later time,
there are j man-woman pairs on the dance floor, and of this
set, there are � pairs from the set of original pairs. How many
ways can this happen?

Interpreting Eq. (A3) more physically, the factor
(N

�

)
corre-

sponds to the number of ways to choose � dimers from the
set of N possible correct dimers. Under the constraint that
each dimer consists of opposite gender monomers, the factor
bN−�, j−� is the number of ways of forming j − � dimers from
a set of 2(N − �) monomers such that none of the chosen
dimers is amongst the set of N − � correct dimers.

In computing Eq. (A2), the pivotal quantity is bN−�, j−�. We
can determine this quantity by considering another question:

Given n original man-woman pairs, what is the number of
ways to form k � n man-woman pairs such that none of these
new pairs coincide with any of the original pairs?

We call this number bn,k . Applying the principle of inclu-
sion and exclusion in a way similar to the application in Sec.
2 of the Supplemental Material [16], we find

bn,k =
k∑

m=0

(−1)m

(
n

m

)(
n − m

k − m

)2

(k − m)! (A4)

Using the definition of the Gamma function to express
(n − m)! as an integral, we then obtain

bn,k = 1

(n − k)!

(
n

k

)∫ ∞

0
dx e−x xn−k (x − 1)k . (A5)

As a consistency check, we can use Eq. (A5) to prove the
identity (

N

j

)2

j! =
j∑

�=0

(
N

�

)
bN−�, j−�, (A6)

which asserts that the total number of unique ways to form
j � N man-woman pairs (regardless of coincidence with
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some original pairing) is the number of ways to choose �

original pairs multiplied by the number of ways to choose
j − � nonoriginal pairs and summed over �.

We are now ready to return to Eq. (A2). First, we rewrite
the ideal gas contributions to the partition function as

(
V

λ3
α

)N− j
(

V

λ3
β

)N− j(
V

λ3
αβ

) j

=
(

V

λ̄3

)2N
(

λ3
μ

V

) j

, (A7)

where we defined

λ̄ ≡ h√
2π (mαmβ )1/2kBT

, λμ ≡ h√
2πkBT

√
1

mα

+ 1

mβ

.

(A8)

Now, with the Laplace’s integral form of the Legendre poly-
nomial Pn(x) [41],

Pn(x) = 1

2π

∫ 2π

0
dφ(x +

√
x2 − 1 cos φ)n (A9)

and the series representation of the Legendre polynomial [41]

Pn(x) =
(

x − 1

2

)n n∑
k=0

(
n

k

)2(x + 1

x − 1

)k

, (A10)

we can establish the integration identity

n∑
k=0

(
n

k

)2

uk = 1

2π

∫ 2π

0
dφ (1 + u + 2

√
u cos φ)n. (A11)

Incorporating Eq. (A5) into Eq. (A2), following a deriva-
tion analogous to that in Sec. 3 of the Supplemental Material
[16], and using Eq. (A11), we ultimately find that the partition
function for this system is

Z ′
N (V, T, E0,�) = 1

2πN!

(
V

λ̄3

)2N ∫ 2π

0
dφ

×
∫ ∞

0

∫ ∞

0
dx dy e−(x+y) IN , (A12)

where

I ≡ x + λ3
μ

V
eβE0 y �(x; β�) − 2

(
λ3

μ

V

)1/2

× eβE0/2
√

y x �(x; β�) cos φ, (A13)

and

�(x; β�) ≡ eβ� + x − 1. (A14)

The thermal de Broglie wavelength in these expressions is
defined as λμ = h/

√
2πμkBT with μ = mβmα/(mβ + mα ),

the reduced mass of an (α, β ) dimer.

2. Equilibrium conditions

With Eq. (A12), the next step in studying the equilibrium
properties of the gendered dimer system is to derive the
equilibrium conditions. Given Eq. (A2), we see that we can
compute the average number of total dimers and the average

number of correct dimers, respectively, with

〈 j〉 = ∂

∂ (βE0)
ln Z ′

N , (A15)

〈�〉 = ∂

∂ (β�)
ln Z ′

N . (A16)

We can also compute the variances and covariances between
these quantities through(

σ 2
j σ 2

j�

σ 2
� j σ 2

�

)
=

(
∂2
βE0

∂βE0∂β�

∂β�∂βE0 ∂2
β�

)
ln Z ′

N , (A17)

where σ 2
j is the variance in the total number of dimers, σ 2

� is
the variance in the number of correct dimers, and σ 2

� j = σ 2
j�

is the covariance between the total number of dimers and the
number of correct dimers.

Using Eq. (A12) directly in Eqs. (A15) and (A16) would
result in cumbersome integral expressions for 〈�〉 and 〈 j〉,
so we will use Laplace’s method to approximate the parti-
tion function. We can expect the exact calculation of this
approximation to mirror that in Sec. 4 of the Supplemental
Material [16], but first we need to reduce Eq. (A12) from a
three-dimensional to a two-dimensional integral. Implement-
ing Laplace’s method on the φ variable alone, we find that the
integrand of Eq. (A12) is maximized for φ = π . Therefore,
we can make the approximation

ln Z ′
N (V, T, E0,�) = ln

∫ ∞

0

∫ ∞

0
dx dy e−(x+y) IN

φ=π + · · · ,

(A18)

where Iφ=π is Eq. (A13) evaluated at φ = π and where ”· · · ”
stands in for terms that are independent of E0 and � or are
subleading to order N . Now, using Eqs. (A15) and (A16)
and implementing the standard Laplace method algorithm in
a way akin to its application in Sec. 4 of the Supplemental
Material [16], we find the system of equations

λ3
μ

V
eβE0 = 〈 j〉 − 〈�〉(1 − e−β�)

(N − 〈 j〉)2
, (A19)

eβ� = 〈�〉 N − 〈�〉(1 − e−β�)

〈 j〉 − 〈�〉(1 − e−β�)
. (A20)

We similarly find the variances and covariances between the
number of dimers and the number of correct dimers are

σ 2
j = 1

2N
〈 j〉(N − 〈 j〉), (A21)

σ 2
j� = 1

2N
〈�〉(N − 〈 j〉), (A22)

σ 2
� = 〈�〉 − 〈�〉2

2

(
1

〈 j〉 + 1

N

)
. (A23)

Comparing Eqs. (A19) and (A20) with Eqs. (27) and (28), we
see that the sets of equilibrium conditions for the nongendered
and gendered systems are identical except for numerical fac-
tors. Therefore, the discussion in the main text also applies
to this gendered system with only slight changes to the ar-
guments of important expressions. In particular, considering
the fully correct dimerization condition for the gendered
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system (i.e., 〈 j〉 = 〈�〉), we find that the critical temperature
kBTc = β−1

c at which this condition is satisfied is

λ3
μ,c

V
eβc (E0+�) (1 − Ne−βc�)2

1 − e−βc�
= N − 1, (A24)

where λμ,c = h/
√

2πμkBTc. Similarly to Eq. (45), we can
categorize the system as type I or II according to the limiting
behavior of the solution to Eq. (A24). We define T ′

I as

kBT ′
I ≡ 2

3
(E0 + �)

[
W0

(
2(E0 + �)

3Eμ,V
N2/3

)]−1

+ O(N−1),

(A25)
where Eμ,V ≡ h2/2πμV 2/3, and T ′

II as

kBT ′
II ≡ �

ln(N )
. (A26)

Then a gendered system is type I or type II according to

system type =
{

type I for Tc 	 T ′
I ,

type II for Tc 	 T ′
II.

(A27)

The parameter space behavior of this system is identical to
that in Fig. 5, with T ′

I and T ′
II replacing TI and TII, respectively.

3. Inequalities for assembly and type

With Eqs. (A25) and (A26), we can derive inequalities
analogous to Eqs. (46), (47), and (49).

For the gendered dimer system, the “search-limiting” con-
dition, derived from T < T ′

I , is

NV < λ3
μ eβ(E0+�), (A28)

where, consistent with the N � 1 limit, we dropped the
O(N−1) term in Eq. (A25). The “combinatorics limiting”
condition, derived from T < T ′

II, is

N < eβ�. (A29)

Equations (A28) and (A29) are the two necessary, but not
sufficient, conditions a gendered dimer system must satisfy
to be in the fully correct dimerization regime of its parameter
space.

For a type I dimer system, we require T ′
I < T ′

II. Using
Eqs. (A25) and (A26) in the inequality T ′

I < T ′
II, and noting

FIG. 7. Example microstate of the gendered system with 2N =
20 subunits where one type of monomer is fixed in space. We repre-
sent the two genders as shaded or unshaded shapes. This microstate
has two correct contacts (in blue), two incorrect contacts (in yellow),
and six monomers and unpaired binding sites (in grey). The total
binding energy for this microstate is −(4E0 + 2�).

that if W0(X ) > k, then X > kek , we obtain an inequality that
when solved for N yields

N < exp

[
3�

2E0
W0

(
2E0

3Eμ,V

)]
. (A30)

Equation (A30) is a necessary, but not sufficient, condition for
a gendered dimer system to be of type I.

4. One type of monomer fixed; mα → ∞ limit

A special case of the gendered dimer system occurs when
one of the two types of monomers is fixed in space. We can
envision such a system as having N distinguishable monomers
interacting with N binding sites where each monomer has
a preferred binding site to which it binds with energy
−(E0 + �); for all other binding sites, the monomer binds
with energy −E0.

An example microstate of such a system is shown in Fig. 7.
The general partition function for this system can be directly
obtained from Eq. (A12) by removing the V N/λ3N

α factor
from the coefficient and taking λμ → λβ . That is, if we are
taking the particles of type α to be fixed, then we ignore their
dynamics by taking mα → ∞, thus taking the reduced mass
μ to mβ .

The equilibrium conditions for this system are similarly
given by Eqs. (A19) and (A20) with λμ replaced with λβ in
the former.
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