
MITE2S 2010: Physics III
Survey of Modern Physics
Problem Set 1 Solutions

Exercises

1. Exercise 1: Most elementary particles are unstable: they disintegrate after a character-
istic lifetime that varies from one species to the next (e.g., lifetime of a neutron is 15
min, of a muon, 2× 10−6s). These are the lifetimes of particles at rest. When particles
are moving at speeds close to the speed of light c, they last much longer, for their
internal clocks (whatever it is that tells them when their time is up) are running slow,
in accordance with time-dilation. As an example, consider a muon that is traveling
through the laboratory at three-fifths the speed of light. How long does it last?

Solution: The lifetime of the particle as measured when the particle is at rest defines how long the
particle can exist. When the particle begins to move we must take into account relativity and the
time that the particle experiences in its own frame becomes shorter than the time we observe on
earth. In particular, denoting ∆tMUON as the time that the muon experiences and ∆tEARTH as the
time we measure on earth, we find.

∆tEARTH = γ∆tMUON

=
1√

1− v2/c2
∆tMUON

=
1√

1− 9/25
∆tMUON

=
∆tMUON√

16/25

=
5
4

(2× 10−6s)

= 2.5× 10−6s

So, according to the observers on earth, the muon has a longer lifetime than its expected lifetime.

2. Exercise 2: A rocket ship leaves the earth at a speed of 3
5c. When a clock on the rocket

says 1 hour has elapsed, the rocket ship sends a light signal back to earth.
(a) According to earth clocks, when was the signal sent?
(b) According to earth clocks, how long after the rocket left did the signal arrive back
on earth?
(c) According to the rocket observer, how long after the rocket left did the signal arrive
back on earth?

Solution: (a) The rocket acts as a reference frame moving with velocity vR with respect to our
stationary reference frame on earth. Then, according to time dilation, time must pass more quickly
on earth than on the rocket by a factor of γ. Thus, labeling ∆tE as the time as measured by earth
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for the rocket to send the signal and ∆tR as the corresponding time for the rocket, we have

∆tE = γ∆tR

=
∆tR√

1− (vR/c)2

=
∆tR√

1− 9/25

=
∆tR√
16/25

=
5
4

(1 hr)

= 1.25 hrs

So in earth’s frame, the signal was sent 1.25 hrs after the rocket left.

(b) To find the total time it takes the signal to arrive on earth after the rocket is launched, we must
add the time that it takes the rocket to reach the point where it transmits the signal and the time
that it takes the signal to get to earth. We calculated the first time, ∆tE , in (a), so we need only use
this result to find the total distance of travel and the corresponding time it would take a light signal
to reach earth. Call the time for the light signal to travel to earth ∆tL,E , then we must have

c∆tL,E = Total Distance
= vR∆tE

=
3
5
c · 5

4
hrs

=
3
4

(c · hrs) =⇒ ∆tL,E =
3
4

hrs

Therefore the total time that it takes the light signal to reach earth is

∆tTotal,E = ∆tL,E + ∆tE =
3
4

hrs +
5
4

hrs = 2 hrs

(c) The time it takes the signal to reach earth in earth’s frame is ∆tTotal,E = 2 hrs. With this result,
we can use the time dilation formula to find the corresponding time in the rocket’s frame. However
for (c), we are considering the problem from the rocket’s frame in which the rocket is stationary and
earth is moving away from the rocket with speed vR. In this case the correct time dilation formula is
∆tTotal,R = γ∆tTotal,E in which time appears to run slow on earth relative to the rocket’s time. So,
for the total time in the rocket’s frame, we have

∆tTotal,R = γ∆tTotal,E

=
5
4
· 2 hrs

= 2.5 hrs

We can also obtain this result by only considering the problem from rocket’s perspective. In its own
frame, ∆tR = 1 hr passes before the rocket sends the signal to earth. At this time, the earth is a
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distance vR∆tR = 3
5(c · hrs) away from the rocket. As the signal travels to earth, earth continues to

move away from the rocket from the rocket’s perspective. So the light signal must travel an extra
distance vR∆tL,R in order to reach earth, where tL,R is the time it takes light to reach earth from
the rocket’s perspective. So, in order to find this time ∆tL,R we must solve

vR∆tL,R +
3
5

(c · hrs) = c∆tL,R

3
5

(c · hrs) = (c− vR)∆tL,R

∆tL,R =
3
5(c · hrs)
c− vR

=
3
5(c · hrs)
c− 3/5c

=
3/5
2/5

hrs =
3
2

hrs

So, from the rocket’s perspective, the total time it takes the signal to reach earth is

∆tTotal,R = ∆tL,R + ∆tR =
3
2

hrs + 1hr = 2.5 hrs

Which is the same result we obtained by time dilation.

3. Exercise 3: A Lincoln Continental is twice as long as a VW Beetle, when they are at
rest. As the Continental overtakes the VW, going through a speed trap, a (stationary)
policeman observes that they both have the same length that the Lincoln Continental
is twice as long as the . The VW is going at half the speed of light. How fast is the
Lincoln going? Leave your answer as a multiple of c.

Solution: We know that the Lincoln Continental is twice as long as the VW Beetle when both
are at rest (LLC = 2LV W ). We also know that from the ground frame they have the same length
(L̄LC = L̄V W ) when they are moving with speeds vLC and vV W respectively. Lastly, we know that
vV W = c/2. Using this information, we can solve for the velocity of the lincoln continenental vLC .

LLC

γLC
=

LV W

γV W

2LV W

γLC
=

LV W

γV W

2
γLC

=
1

γV W

2

√
1−

v2
LC

c2
=

√
1−

v2
V W

c2

4
(

1−
v2
LC

c2

)
=

(
1− 1

4

)
(

1−
v2
LC

c2

)
=

3
16

v2
LC

c2
= 1− 3

16

=
13
16

=⇒ vLC =
√

13
4
c
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4. Exercise 4: A sailboat is manufactured so that the mast leans at an angle θ̄ with respect
to the deck. An observer standing on a dock sees the boat go by at speed v. What
angle does this observer say the mast makes?

Solution: A fundamental effect of special relativity is that lengths (of a moving object) parallel to
the direction of motion are contracted. So, in this problem we realize that the horizontal extent of
the bottom ray of the angle must be contracted due to the motion of the boat. Labeling the length
of the mast as L we can write the height H̄ and original horizontal extent X̄ as

H̄ = L sin θ̄
X̄ = L cos θ̄

Due to length contraction, the value of X̄ becomes the smaller value X in the moving reference frame
and we find that the relation between X and X̄ is

X =
X̄

γ

So that X = L cos θ̄/γ. Lengths perpendicular to the direction of motion are not changed by moving
to different reference frames so we find that H = H̄ = L sin θ̄. Using this information we can define
the angle θ of the mast in the moving reference frame as

tan θ =
H

X

=
L sin θ̄
L cos θ̄/γ

= γ tan θ̄ =⇒ θ = tan−1(γ tan θ̄)

When we get an algebraic result such as this one, it is useful to check limiting cases to make sure
that our formula correctly predicts what physical intuition tells us should be true. For example, we
will consider the formula for v = 0 and v → c and make sure it provides a result which mirrors
what we think should happen. For v = 0 we know that the sailboat is not moving and therefore
length contraction is absent. Therefore θ should be equal to θ̄, which is what we find when we plug
v = 0 ⇔ γ = 1 into our formula. Conversely, as v → c the horizontal length is further contracted
until it only appears as though we have a stick of length L standing straight up. This reasoning
matches the θ = π/2 result we get if we plug v = c⇔ γ =∞ into our above formula.

5. Exercise 5: In class, we derived how the velocities in the x direction transform when
you go from a moving frame Ō to a rest frame O. Derive the analogous formulas for the
velocities in the y and z directions.

Solution: In order to derive the velocity transformation law for the y and z velocities, we must first
collect the relevant Lorentz transformations for transforming between O and Ō.

∆y = ∆ȳ
∆z = ∆z̄

∆t = γ

(
∆t̄+

vx∆x̄
c2

)
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Computing the velocity in the y direction for the O frame, we find

uy = lim
∆t̄→0

∆y
∆t

= lim
∆t̄→0

∆ȳ
γ(∆t̄+ vx∆x̄/c2)

= lim
∆t̄→0

∆ȳ/∆t̄
γ(∆t̄/∆t̄+ vx∆x̄/∆t̄/c2)

=
ūy

γ(1 + vxūx/c2)

where we divided the numerator and denominator by ∆t̄ in the third line.
The relative velocity between the two frames O and Ō exists only in the x direction, so all directions
(i.e. the y and z directions) which are perpendicular to the motion between the frames do not undergo
transformations as we move from one frame to another. So the derivation of uz will be the same as
the derivation for uy and we have

uz =
ūz

γ(1 + vxūx/c2)

6. Exercise 6: A and B travel at 4
5c and 3

5c with respect to the ground. How fast should c
travel so that she sees A and B approaching her at the same speed? What is this speed?

Solution: Let us label the velocity of A relative to C as +u. Then, according to the problem, the
velocity of B relative to A must be −u. Using the relativistic transformations for velocity we then
have

+u =
vC − vA

1− vCvA
c2

−u =
vC − vB

1− vBvA
c2

Where the letters label the velocities of the corresponding particle. From the problem statement we
know vB = 3c/5 and vA = 4c/5 and we are trying to find vC so, we have

u = u
vC − vA

1− vCvA
c2

=
vB − vC

1− vBvA
c2

vC − 4c
5

1− 4vC
5c

=
3c
5 − vC

1− 3vC
5c(

vC −
4c
5

)(
1− 3vC

5c

)
=

(
1− 4vC

5c

)(
3c
5
− vC

)
vC −

4c
5

+
12vC

25
−

3v2
C

5c
= −vC +

4v2
C

5c
− 12vC

25
+

3c
5

0 = −2vC +
7v2

C

5c
− 24vC

25
+

7c
5

=
7v2

C

5c
− 74vC

25
+

7c
5

= 1/25c
(
35v2

C − 74vCc+ 35c2
)

= (5vC − 7c)(7vC − 5c)
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The last line produces two solutions: vC = 7c/5 and vC = 5c/7. But, since the speed of an object
can never exceed the speed of light the first solution is extraneous and we have vC = 5c/7

7. Exercise 7: A train with a rest length L moves at speed 5c/13 with respect to the ground.
A ball is thrown from the back of the train to the front. The speed of the ball with
respect to the train is c/3. As viewed by someone on the ground, how much time does
the ball spend in the air, and how far does it travel?

Solution: In order to find the time and distance of travel of the ball we must first find the speed of
the ball relative to the ground. So, we use the relativistic velocity addition formula:

vB =
v̄B + vT

1 + v̄BvT
c2

=
c/3 + 5c/13

1 + 5·1
13·3

= c
28/39
1 + 5

39

= c
28/39
44/39

= c
7
11

Now, from the ground frame we know that as the ball is thrown, the train continues to move so that
the ball has to travel an extra distance to reach the other side. We also know that due to special
relativity, the length of the train is contracted in our frame. So, denoting t as the time it takes the
ball to reach the other side of the train, we find

vBt =
L

γ
+ vT t

(vB − vT )t =
L

γ

t =
L

γ(vB − vT )

=
L

c(7/11− 5/13)

√
1−

v2
T

c2

=
L

c(36/143)

√
1− 25/169

=
143L
36c

√
144/169

=
11L
3c

And therefore the total distance the ball travels is vBt =
7
3
L .

8. Exercise 8: In a given reference frame, event 1 happens at x = 0, ct = 0, and event 2
happens at x = 2, ct = 1. Find a frame in which the two events are simultaneous.

Solution: One of the fundamental effects of relativity is the loss of simultaneity. A corollary to this
effect, potentially called the restoration of simultaneity, is depicted in this problem. Our job is to find
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another frame Ō in which the two events (x1, t1) = (0, 0) and (x2, t2) = (2, 1/c) occur simultaneously
(i.e. t̄1 = t̄2). Assuming the original frame of the events is our rest frame we have the following
Lorentz transformation for the time in a frame Ō moving with velocity v with respect to the rest
frame.

t̄ = γ
(
t− vx

c2

)
Requiring that our two events be simultaneous in this Ō frame, we find

t̄1 = t̄2

γ
(
t1 −

vx1

c2

)
= γ

(
t2 −

vx2

c2

)
γ

(
0− v · 0

c2

)
= γ

(
1
c
− 2v
c2

)
0 =

(
1
c
− 2v
c2

)
1
c

=
2v
c2

=⇒ v = c/2

So the Ō frame moves away from the rest frame with relative velocity c/2 in the x direction.

Problems

1. Problem 1. A Passing Stick: A stick of length L moves past you at speed v. There is
a time interval between the front end coinciding with you and the back end coinciding
with you. What is this time interval in
(a) your frame? (Calculate this by working in your frame)
(b) your frame? (Work this in the stick’s frame)
(c) the stick’s frame? (Work in your frame. This is tricky).
(d) the stick’s frame? (Work in the stick’s frame)

Solution: (a) In our frame, if a stick of rest length L is moving at a velocity v then the stick is
length contracted down to L/γ. Consequently, the time interval between the front end coinciding
with us and the back end coinciding with us is L/γv .

(b) In the stick’s frame it has a length L and we are moving at a velocity v towards it. So, according
to the stick, a time L/v passes as we move from one end of the stick to the other. In the stick’s
reference frame, we are moving so time must run more slowly for us than for the stick. So, if the
stick experiences a time L/v we must experience a time L/γv .

(c) From the rear clock ahead effect, we know that the rear end of the stick measures a set time
ahead of the front end. So, when the front end of the stick reaches us, this front end reads t = 0 and
the back end reads t = Lv/c2. In our frame, the stick is length contracted down to L/γ so that the
time it takes to pass the length of the stick, from front to back end, is L/γv in the ground frame.
This time is therefore L/γ2v in the stick’s frame. So, if we start at the front end of the stick with
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t = 0 and travel to the back end of the stick, the time at this back end would read

L

γ2v
+
Lv

c2
=
L

v

(
v2

c2
+

1
γ2

)
=
L

v

(
v2

c2
+
(

1− v2

c2

))
=

L

v

where we added the time of travel and set time that the back end is ahead of the front end.

(d) As we found in (b), the time that it takes us to pass between the two ends of the stick is L/v

in the stick’s frame.

2. Problem 2. Rotated Square: A square with side L flies past you at speed v, in a direction
parallel to two of its sides. You stand in the plane of the square. When you see the
square at its nearest point to you, show that it looks to you like it is rotated, instead of
contracted. Assume that L is small compared with the distance between you and the
square. Solution:

Figure 1: Parallelogram from close up

Imagine that we are standing in the plane of the square which is moving to the right with velocity v.
From the fundamental effects of special relativity, we automatically know that the square is length
contracted so that it becomes a rectangle with the short side parallel to the direction of motion.
A rectangle is what the square becomes but the question is what does the square look like? More
specifically, where are different parts of the square when the light from the square hits your eye? The
answer has to do with the signal propagation of the photons. Assume we are standing in front of one
of the length contracted sides of the square. Then, the photons from the opposite length contracted
side must travel an extra distance L compared to the photons from the near side to reach our eyes.
Consequently, the opposite side photons require an extra time L/c of flight. But as these opposite
side photons travel towards our eyes, the square moves to the right a certain distance. Specifically,
when these opposite side photons traverse the length L of the square, the square has already moved
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Figure 2: Parallelogram from far away (looks like rotated square from far away)

Figure 3: Rotated square from far away (looks like parallelogram from far away)

a distance Lv/c to the right. At this point in time, the near side photons can be emitted from the
square and they will reach our eyes at the same time that these delayed opposite side photons do.
The result is that we observe the opposite side of square as farther to the left than the near side
which results in a quadrilateral which no longer looks like a square. The quadrilateral looks like the
one in Fig.1 and given the requirement that we are far away from the object it looks like Fig.2. At
first glance, this looks nothing like a rotated square. But, when we consider Fig.3, a rotated square
from far away, and Fig.4, the same square from close up, we can understand why the problem makes
the requirement that we are standing far away from the square. From this far away position, the
object that looks like a parallelogram also looks like a rotated square.

3. Problem 3. Cookie Cutter: Cookie dough lies on a conveyor belt that moves at speed
v. A circular stamp stamps out cookies as the dough rushes by beneath it. When you
buy these cookies in a store, what shape are they? That is, are they squashed in the
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Figure 4: Rotated square from close up

direction of the belt, stretched in that direction, or circular? Carefully show, step by
step, your reasoning.

Solution: It is easiest to understand this problem from the frame in which we buy the cookies. This
is the frame which ultimately matters in the end and is the same frame as the ground frame. From
this frame, the dough rushes by on the conveyor belt and becomes length contracted. Assuming that
the diameter of the cookie cutter is L when the cookies are cut, then the cookies will have a length
of Lγ at rest because this length is what is length contracted down to the cookie cutter diameter L.
So, when we buy the cookies they look stretched out in the direction of the conveyor belt.
When we consider the same problem from the perspective of the cookie we obtain seemingly contradic-
tory results, because from this perspective the cookie cutter is the one that seems length contracted.
However, because of the loss of simultaneity, the simultaneous cutting which occurs in the ground
frame does not occur in the cookie’s frame. In fact this problem uses the same analysis as in the
Length Contraction Paradox of the first recitation’s Relativity Notes to conclude that the final length
of the cookies is γL. Specifically from the dough’s frame, the right most point of the cutter reaches
the dough at one point in time and the leftmost point reaches the dough a time γLv/c2 later where
the factor of γ comes from a consideration of time dilation. The cutter therefore travels an extra
distance γLv2/c2 in addition to its length L/γ. So we find that the total length of the resulting
cookie is

L

γ
+
Lγv2

c2
= Lγ

(
1
γ2

+
v2

c2

)
= Lγ

((
1− v2

c2

)
+
v2

c2

)
= Lγ

4. Problem 4. Train in a Tunnel and a Bomb: A train and a tunnel both have rest lengths
L. The train moves toward the tunnel at speed v. A bomb is located at the front of
the train. The bomb is designed to explode when the front of the train passes the far
end of the tunnel. A deactivation sensor is located at the back of the train. When the
back of the train passes the rear end of the tunnel, the sensor tells the bomb to disarm
itself. Does the bomb explode? Carefully show, step-by-step, your reasoning. Simply
stating ”Yes” or ”No” will get you no points on this problem.

Solution: The bomb explodes . We can see this most easily by considering the problem from the
train’s frame. In the train’s frame the length of the tunnel is contracted so that it becomes shorter
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than the train’s length. Therefore, the front end of the train reaches the far end of the tunnel while the
back end of the train is still outside the tunnel and the bombs must go off without being deactivated.
The paradox comes from considering the same situation from the tunnel’s frame in which the train
is now shorter; the back end of the train reaches the near side of the tunnel before the front end of
the train reaches the far end of the tunnel and the bomb must therefore be deactivated before going
off. The resolution of the paradox comes from the fact that the signal that the back end of the train
sends to the front end is not able to reach the front end before the bombs go off. Let tL be defined
as the time that the signal takes to get to the front end of the train and let tT be the time that it
takes the front end of the train to reach the far end of the tunnel after the deactivation signal goes
off. So, assuming that this signal travels at the maximum speed possible, c, tL must satisfy

L

γ
+ vtL = ctL =⇒ tL =

L/γ

c− v

where we include a factor of 1/γ because we are observing the moving train from the ground frame.
Next, we know that tT must satisfy

L− L/γ
v

= tT

Now, we must prove that tT < tL for all v even when the signal travels at the speed of light c. So,
we have

tT < tL
L− L/γ

v
<

L/γ

c− v
1− 1/γ

v
<

1/γ
c− v

1/γ − 1/γ2

v
<

1/γ2

c(1− v/c)

=
1− v2/c2

c(1− v/c)

=
1 + v/c

c
1/γ − (1− v2/c2)

v
<

1
c

+
v

c2

1
γv
− 1
v

+
v

c2
<

1
c

+
v

c2

1
γv

<
1
v

+
1
c

1
v

√
1− v2/c2 <

1 + v/c

v√
1− v2/c2 < (1 + v/c)√

1− v/c <
√

1 + v/c

The last line is always true for v > 0 so tT < tL is true and the train always reaches the end of the
tunnel before the light signal reaches the end of the train. So, the bomb always explodes.

5. Problem 5. Clapping Both Ways: Twin A stays on earth, and twin B flies to a distant
star and back. (a) Throughout the trip, B claps in such a way that his claps occur at
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equal time intervals ∆t in A’s frame. At what time intervals do the claps occur in B’s
frame?
(b) Now, let A clap in such a way that his claps occur at equal time intervals ∆t in B’s
frame. At what time intervals do the claps occur in A’s frame? (This is tricky. Note
that the sum of all the time intervals must equal the increase in A’s age, which is greater
than the increase in B’s age, in accordance with the twin paradox).

Solution: (a) From A’s perspective, B’s clock must run slow because B is moving. So in order for
the claps to occur at equal time intervals ∆t in A’s frame, these claps must occur at time intervals
∆t/γ in B’s frame.

(b) It appears as though by applying the same logic as in (a) we should get the same answer: A
should clap at intervals ∆t/γ in order for the time intervals to be ∆t in B’s frame. But, this answer
contradicts the standard Twin Paradox Result in that it implicitly states that more time passes in
B’s frame than in A’s frame. The solution to this paradox comes from a consideration of the Rear
Clock Ahead Effect. Let the distance between the star and earth be L. Then from B’s perspective,
the two planets are a distance L/γ apart and are traveling towards it with speed v. Also we know
that when Earth’s clock reads t = 0, the star’s clock must read t = Lv

c2
because in this frame the star

is at the rear of a moving length. This is all fine until we consider the return trip. When B reverses
direction, then all of a sudden Earth’s clock is the rear clock and must therefore be ahead of the
star’s clock by a time Lv/c2. For example, if we let Lv/c2 = 5min and we get to the star at 5:05 pm
(star’s time) then Earth’s clock must show 5:00 pm, because the star’s clock is ahead. But, when we
reverse directions, Earth’s clock must be ahead so it must change from 5:00pm to 5:10pm. In effect,
it appears as though Earth’s clock jumped from 5:00 to 5:10 in an instant. Consequently anything
that happened on earth in this 10 minute period, is not observed by B. This does not occur in (a)
because in that case A is looking at the single clock in B’s frame and the rear clock ahead effect is
not present for signle points in space.
From this example, we realize that the correct behavior for A is to clap at a rate ∆t/γ for some time
period and then stop clapping for a time 2Lv/c2 and then resume clapping at ∆t/γ. Specifically, A
must clap for as long as B is moving and before B changes direction. Since B believes it travels for a
time L/γv between the planets A must observe this time as L/γ2v and this is therefore the amount
of time that A must clap.

A claps at intervals ∆t/γ for a time L/γ2v and then stops for a time 2Lv/c2 and then continues
to clap at intervals ∆t/γ for another time interval L/γ2v

.

We notice that the sum of these times produces the expected result

2L
γ2v

+
2vL
c2

=
2L
v

(
1
γ2

+
v2

c2

)
=

2L
v

(
v2

c2
+
(

1− v2

c2

))
=

2L
v

which is the total time A measures as B travels from Earth and Back.

6. Problem 6. Many velocity additions: An object moves at speed cβ1 with respect to
observer O1, which moves at speed cβ2 with respect to O2, which moves at speed cβ3

with respect to O3 and so on, until finally ON−1 moves at speed cβN with respect to ON .
Show by mathematical induction that the speed, call it cβ(N) of the object with respect

to ON can be written as β(N) =
P+

N − P
−
N

P+
N + P−N
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where P+
N ≡

N∏
i=1

(1 + βi) and P+
N ≡

N∏
i=1

(1− βi).

Solution: The induction procedure is composed of the following steps
1)Show that the formula is true for N = 1
2)Assume the formula is true for k
3)Show using the formula in step 2) that the formula is true for k + 1

First checking our result for N = 1

β(1) =
P+

1 − P
−
1

P+
1 + P−1

=
(1 + β1)− (1− β1)
(1 + β1) + (1− β1)

= β1

This translates into the statement that the relative velocity of the object with respect to O1 is β1.
This result is obvious from the problem statement, so the first condition is satisfied.
Now we assume that the formula for β(k) is generally true.

β(k) =
P+

k − P
−
k

P+
k + P−k

and from this assumption we must show that β(k+1) is true. In particular we must show that β(k+1) is
equivalent to the standard result from relativity. The speed β(k+1) represents the speed of the object
with respect to Ok+1 which is the result of relativistically adding the speed of the object with respect
to Ok (which is β(k)) with the speed of Ok with respect to Ok+1 (which is βk+1). Therefore β(k+1) is

β(k+1) =
βk+1 + β(k)

1 + βk+1β(k)

And assuming that the formula is true for N = k, we have

βk+1 =
βk+1 + P+

k −P−k
P+

k +P−k

1 + βk+1
P+

k −P−k
P+

k +P−k

=
βk+1(P+

k + P−k ) + (P+
k − P

−
k )

(P+
k + P−k ) + βk+1(P+

k − P
−
k )

=
(1 + βk+1)P+

k − P
−
k (1− βk+1)

(1 + βk+1)P+
k + P−k (1− βk+1)

=
(1 + βk+1)

∏k
i=1(1 + βi)− (1− βk+1)

∏k
i=1(1− βi)

(1 + βk+1)
∏k

i=1(1 + βi) + (1− βk+1)
∏k

i=1(1− βi)

=
∏k+1

i=1 (1 + βi)−
∏k+1

i=1 (1− βi)∏k+1
i=1 (1 + βi) +

∏k+1
i=1 (1− βi)

=
P+

k+1 − P
−
k+1

P+
k+1 + P−k+1

So the formula is true for β(k+1) and the induction is complete. Alternatively, we could have gone
in the reverse direction by beginning with this last line as our first step in the (k + 1) induction and
then going on to show that the formula produces the standard velocity addition result.

Now for some mathematics: Why does induction work? Well, we first prove that the rule is true for
1. Then we prove that if the rule is true for general k then the rule must be true for k+1. Therefore,
if it is true for 1 it must be true for 1+1=2, and if it’s true for 2 it must be true for 3 and so on.
Thus, we find that the property is true for all positive integers.

13


