
MITES 2010: Physics III
Survey of Modern Physics
Problem Set 4 Solutions

1. Problem 1: Applying the rules of Quantum Mechanics.
Consider a particle whose energy can only take on the following values:

E1 = 3h̄ω, E2 = 6h̄ω, E3 = 9h̄ω, E4 = 0

These are the only allowed energies that the particle can have. They have corresponding
eigenstates:
|E1〉, |E2〉, |E3〉, |E4〉. Ĥ is the Hamiltonian operator - operator representing measurement
of the particle’s energy.

Consider a particle in the following indeterminate state.

|ψ〉 =
−1√

6
|E1〉+

eiθ√
6
|E2〉+

√
2
3
eiϕ|E4〉

(i.) If you measure the energy of 10,000 identical particles, all in the above ’indetermi-
nate’ state just before your measurement, how many of them do you expect to yield
energy value of E2?

Solution: The probability of obtaining E2 is
∣∣∣∣ eiθ√6

∣∣∣∣2 =
1
6

. So, out of 10,000 measurements, we expect

10, 000
6

≈ 1667 particles

to yield energy E2.

(ii.) On average, what value of energy would your measurement yield?

Solution:

Eavg = |c1|2E1 + |c2|2E2 + |c3|2E3 + |c4|2E4

=
1
6

3h̄ω +
1
6

6h̄ω + 0 · 9h̄ω +
2
3
· 0

=
3
2
h̄ω

(iii.) For which value of θ is the probability of a particle having energy E2 zero?

Solution: There is no value of θ for which the probability of obtaining E2 is zero . First of all, this
is because the coefficient of the state |E2〉 is proportional to eiθ and eiθ never equals zero. Second of
all, the magnitude of eiθ is always 1 regardless of θ, so the probability of being in E2 is independent
of θ Prob(E2)=|eiθ/

√
6|.
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(iv.) Suppose you measure the energy of a particle. You find that it has energy E1. Does
this mean that the particle was in state |E1〉 just before your measurement? Suppose
you measure the energy of the same particle for the second time. What is the proba-
bility that you get E4 as the energy this second time?

Solution: No, the particle was not in the state |E1〉 before the measurement . A postulate of quan-
tum mechanics states that a quantum state is in a superposition of many states before a measurement
and only collapses to one state after the measurement. Also, since the state is now in |E1〉 then there
is zero probability that it is in any other state .

(v.) Suppose you measure the energy of the particle and find that it has energy E2.
Write down the ket-vector representing the particle’s state immediately after this mea-
surement.

Solution: Since we measured energy and obtained the value E2 we know that the particle’s state
has now collapsed to the state corresponding to E2. That is, the particle is in state |ψ〉 = |E2〉 .

2. Problem 2. Sequential measurements
An operator Â representing observable A, has two normalized eigenstates ψ1 and ψ2,
with eigenvalues a1 and a2 respectively. Operator Â representing observable B, has two
normalized eigenstates φ1 and φ2, with eigenvalues b1 and b2. The eigenstates are related
by

ψ1 =
3φ1 + 4φ2

5
ψ2 =

4φ1 − 3φ2

5
(1)

(a.) Observable A is measured, and the value a1 is obtained. What is the state of the
system (immediately) after this measurement?

Solution: By one of the postulates of quantum mechanics, the state has collapsed into the state
corresponding to eigenvalue a1. So, the state is in ψ1 .

(b.) If B is now measured, what are the possible results, and what are their probabilities?

Solution: The state is currently in ψ1.

ψ1 =
3
5
φ1 +

4
5
φ2

From this state, there are two possible results upon measurement of B. These results and their
associated probabilities are

Results Probability

b1

(
3
5

)2

=
9
25

b2

(
4
5

)2

=
16
25

which fits our normalization requirement because 9/25 + 16/25 = 25/25 = 1
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(c.)Right after the measurement of B, A is measured again. What is the probability of
getting a1? (Note that the answer would be quite different if I had told you the outcome
of the B measurement.)

Solution: There are two possible ways to get to a1 from our initial a1 measurement. We can obtain
b1 from the B measurement and then obtain a1 from the A measurement. Or, we can obtain b2 from
the B measurement and then obtain a1 from the A measurement. In order to calculate the total
probability of obtaining a1, we must calculate the probability of these independent paths and then
add them. But first, we must write φ1 and φ2 in terms of ψ1 and ψ2 in order to obtain the probabilities
for the second measurement of A after our measurement of B. Solving Eq (1)by elimination, we find
for φ1

ψ1 =
3φ1 + 4φ2

5
5ψ1 − 4φ2

3
= φ1

Substituting this result into our other equation, we find

ψ2 =
4φ1 − 3φ2

5

5ψ2 =
4
3

(5ψ1 − 4φ2)− 3φ2

=
20
3
ψ1 −

16
3
φ2 − 3φ2

=
20
3
ψ1 −

25
3
φ1

25φ2 =
20
3
ψ1 − 5ψ2

φ2 =
4ψ1 − 3ψ2

5
Now, solving for φ1

5ψ1 = 3φ1 + 4(
4
5
ψ1 −

3
5
ψ2)

= 3φ1 +
16
5
ψ1 −

12
5
ψ2

9
5
ψ1 = 3φ1 −

12
5
ψ2

φ1 =
3ψ1 + 4ψ2

5
So, in summary, we have

φ1 =
3ψ1 + 4ψ2

5
φ2 =

4ψ1 − 3ψ2

5
From this result, we may now construct our probabilities. There are two paths to get to a1 from a
measurement of B. These paths and their associated probabilities are

Path Probability

1) From b1 to a1
9
25
× 9

25
=

81
625

2) From b2 to a1
16
25
× 16

25
=

256
625
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For each path, we multiplied the probability of obtaining our first measured value of B by the
probability of obtaining our second measured value of A. The total probability of obtaining a1 is

the sum of these probabilities and is therefore
81
625

+
256
625

=
337
625

We can check that this procedure

for calculating probability is consistent with normalization by calculating the probability other two
possible paths. Instead of obtaining a1, we could have obtained a2 in our second measurement and
the paths and probabilities associated with this value are

Path Probability

3) From b1 to a2
9
25
× 16

25
=

144
625

4) From b2 to a2
16
25
× 9

25
=

144
625

We have listed all possible outcomes of our measurements. The sum of the probabilities for theses
outcomes must be one.

Prob(Path 1) + Prob(Path 2) + Prob(Path 3) + Prob(Path 4) =
81
625

+
256
625

+
144
625

+
144
625

=
625
625

= 1

Our outcomes are normalized, so we know that our procedure is correct.

3. Problem 3: Three Level System.
The Hamiltonian for a certain three-level system is represented by the matrix

Ĥ = h̄ω

 1 0 0
0 2 0
0 0 2


Two other observables, A and B, are represented by the matrices

Â = λ

 0 1 0
1 0 0
0 0 2

 B̂ = µ

 2 0 0
0 0 1
0 1 2


(a.) Find the eigenvalues and (normalized) eigenvectors of H, A, and B.

Solution: Employing the standard procedure of calculating eigenvalues/eigenvectors, we find

det(Ĥ − EI) = det

 h̄ω − E 0 0
0 2h̄ω − E 0
0 0 2h̄ω − E


= (h̄ω − E)det

(
2h̄ω − E 0

0 2h̄ω − E

)
= (h̄ω − E)(2h̄ω − E)2

So the possible eigenvalues of Ĥ are E1 = h̄ω, E2 = 2h̄ω, and E3 = 2h̄ω. Using these eigenvalues to
find the eigenvectors, we find
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E1 = h̄ω

0 = (Ĥ − E1I)|E1〉 =

 h̄ω − h̄ω 0 0
0 2h̄ω − h̄ω 0
0 0 2h̄ω − h̄ω

 |E1〉

=

 0 0 0
0 h̄ω 0
0 0 h̄ω

 |E1〉

So we see that |E1〉 can have no second and third component in order for it to satisfy the above
equation. Therefore, |E1〉 must be of the form

|E1〉 =

 a
0
0

 =

 1
0
0


Where we chose a = 1 in order to normalize |E1〉.
The next eigenvalue E2 = E3 = 2h̄ω has multiplicity two (i.e. it occurs twice) so we should get two
eigenstates.

E = 2h̄ω

0 = (Ĥ − EI)|E〉 =

 h̄ω − 2h̄ω 0 0
0 2h̄ω − 2h̄ω 0
0 0 2h̄ω − 2h̄ω

 |E〉
=

 −h̄ω 0 0
0 0 0
0 0 0

 |E〉
We see that |E〉 can have no first component in order for it to satisfy the above equation. There are
two ways we can accomplish this: |E〉 only has a second component; |E〉 only has a third component.
These two ways correspond to our two eigenstates, so that we have |E2〉 and |E3〉 as

|E2〉 =

 0
1
0

 |E3〉 =

 0
0
1


Summarizing these results, we have for the operator Ĥ

Eigenvalues Eigenstates

E1 = h̄ω |E1〉 =

 1
0
0


E2 = 2h̄ω |E2〉 =

 0
1
0


E3 = 2h̄ω |E3〉 =

 0
0
1


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Employing the same procedure for Â, we find

det(Â− aI) = det

 −a µ 0
µ −a 0
0 0 2µ− a


= −a det

(
−a 0
0 2µ− a

)
− µ

(
µ 0
0 2µ− a

)
= −a(a− 2µ)a− µµ(2µ− a)
= a2(2µ− a)− µ2(2µ− a)
= (a2 − µ2)(2µ− a)
= (a− µ)(a+ µ)(2µ− a)

So, the eigenvalues of the operator Â are a1 = µ, a2 = −µ, and a3 = 2µ. Computing eigenvectors,
we find
a1 = µ

0 = (Â− a1I)|A1〉 =

 −µ µ 0
µ −µ 0
0 0 2µ− µ

 |A1〉

=

 −µ µ 0
µ −µ 0
0 0 µ

 |A1〉

The last line leads us to an |A1〉 of the form

|A1〉 = α1

 1
1
0

 =
1√
2

 1
1
0


where we chose α1 = 1/

√
2 for normalization.

a2 = −µ

0 = (Â− a2I)|A2〉 =

 µ µ 0
µ µ 0
0 0 2µ+ µ

 |A2〉

=

 µ µ 0
µ µ 0
0 0 3µ

 |A2〉

The last line leads us to an |A2〉 of the form

|A1〉 = α2

 1
−1
0

 =
1√
2

 1
−1
0


where we chose α2 = 1/

√
2 for normalization.
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Lastly a3 = 2µ

0 = (Â− a3I)|A1〉 =

 −2µ µ 0
µ −2µ 0
0 0 2µ− 2µ

 |A3〉

=

 −2µ µ 0
µ −2µ 0
0 0 0

 |A3〉

If we let |A3〉 have the form

|A3〉 =

 g1

g2

g3


then the last line suggests the following system of equations

−2g1 + g2 = 0
g1 − 2g2 = 0

these two equations are inconsistent and therefore produce the null solution g1 = g2 = 0. Therefore,
|A3〉 is of the form

|A3〉 =

 0
0
g3

 =

 0
0
1


where we chose g3 = 1 for normalization. In summary, we have for the operator Â

Eigenvalues Eigenstates

a1 = µ |A1〉 =
1√
2

 1
1
0


a2 = −µ |A2〉 =

1√
2

 1
−1
0


a3 = 2µ |A3〉 =

 0
0
1


Now, for B̂. Studying the matrix form of this operator and comparing it with the operator Â, we
see that B̂ and Â have the same set of eigenvalues and eigenvectors. We will prove this by explicit
computation

det(B̂ − bI) = det

 2λ− b 0 0
0 −b λ
0 λ −b


= (2λ− b) det

(
−b λ
λ −b

)
= (2λ− b)(b2 − λ2)
= (2λ− b)(b+ λ)(b− λ)
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So the eigenvalues of the operator B̂ are b1 = λ, b2 = −λ, and b3 = 2λ. Computing eigenvectors, we
find

b1 = λ

0 = (B̂ − b1I)|B1〉 =

 2λ− λ 0 0
0 −λ λ
0 λ −λ

 |B1〉

=

 λ 0 0
0 −λ λ
0 λ −λ

 |B1〉

This result is similar to one obtained for the Â case and we therefore see that

|B1〉 =
1√
2

 0
1
1


b2 = −λ

0 = (B̂ − b2I)|B1〉 =

 2λ+ λ 0 0
0 +λ λ
0 λ +λ

 |B1〉

=

 3λ 0 0
0 λ λ
0 λ λ

 |B1〉

This result is similar to one obtained for the Â case and we therefore see that

|B2〉 =
1√
2

 0
1
−1


b3 = 2λ

0 = (B̂ − b3I)|B1〉 =

 2λ2λ 0 0
0 −2λ λ
0 λ −2λ

 |B1〉

=

 λ 0 0
0 −2λ λ
0 λ −2λ

 |B1〉

Once again, we obtain inconsistent equations from two of our rows (the bottom two rows) and the
only surviving component is the top component. This result is similar to one obtained for the Â case
and we therefore see that

|B3〉 =

 1
0
0


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In summary, we have for the operator B̂

Eigenvalues Eigenstates

b1 = λ |B1〉 =
1√
2

 0
1
1


b2 = −λ |B2〉 =

1√
2

 0
1
−1


b3 = 2λ |B3〉 =

 1
0
0


(b.) Suppose the system starts out in the generic state

|S(0)〉 =

 c1

c2

c3


with |c1|2 + |c2|2 + |c3|2 = 1. Find the expectation values (i.e. averages) (at t = 0) of H, A
and B.

Solution: The formula for the average of an observable

〈O〉 = 〈S(0)|Ô|Ŝ(0)〉

So for the Hamiltonian |hatH

〈S(0)|Ĥ|Ŝ(0)〉 =
(
c†1 c†2 c†3

)
h̄ω

 1 0 0
0 2 0
0 0 2

 c1

c2

c3


=

(
c†1 c†2 c†3

) c1h̄ω
2c2h̄ω
2c3h̄ω

 = h̄ω(|c1|2 + 2|c2|2 + 2|c3|)2 = Eavg

similarly for Â.

〈S(0)|Â|Ŝ(0)〉 =
(
c†1 c†2 c†3

)
λ

 0 1 0
1 0 0
0 0 2

 c1

c2

c3


=

(
c†1 c†2 c†3

) λc2

λc1

2λc3

 = λ(c†1c2 + c†2c1 + 2|c3|2) = aavg
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And finally for B̂

〈S(0)|Â|Ŝ(0)〉 =
(
c†1 c†2 c†3

)
λ

 2 0 0
0 0 1
0 1 0

 c1

c2

c3


=

(
c†1 c†2 c†3

) 2µc1

µc3

µc2

 = µ(|c1|2 + c†2c3 + c†3c2) = bavg

(c.) What is |S(t)〉? If you measured the energy of this state (at time t), what values
might you get, and what is the probability of each? Answer the same questions for A
and for B.

Solution: From the notes we know that if |S(0)〉 is of the form

|S(0)〉 = a|E1〉+ b|E2〉

then the time dependent state |S(t)〉 is

|S(t)〉 = ae−iE1/h̄|E1〉+ be−iE2/h̄|E2〉

So we see that our |S(t)〉 is of the form

|S(t)〉 =

 c1e
−iE1/h̄

c2e
−iE2/h̄

c3e
−iE3/h̄

 =

 c1e
−iω

c2e
−i2ω

c3e
−i2ω


and from the form of |S(0)〉 as

|S(0)〉 = c1|E1〉+ c2|E2〉+ c3|E3〉,

we see that if we measure the energy of our state, then we can get

Energy Probability
h̄ω |c1|2

2h̄ω |c2|2 + |c3|2

where we added the probabilities of being in state |E2〉 and |E3〉 because they have the same eigen-
value.

In order to find the probabilities of obtaining certain eigenvalues of the operators Â and B̂, it is
useful to write |S(0)〉 as a linear combination of their respective eigenvectors. For Â we have
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|S(0)〉 =

 c1

c2

c3


=

 (c1 + c2 + c1 − c2)/2
(c1 + c2 − c1 + c2)/2

c3


= c3

 0
0
1

+
c1 + c2

2

 1
1
0

+
c1 − c2

2

 1
−1
0


= c3

 0
0
1

+
c1 + c2√

2
1√
2

 1
1
0

+
c1 − c2√

2
1√
2

 1
−1
0


= c3|A3〉+

c1 + c2√
2
|A1〉+

c1 − c2√
2
|A2〉

So, we see that if we measure observable A, then we get

Eigenvalue Probability

a1 = µ
|c1 + c2|2

2

a2 = −µ |c1 − c2|2

2
a3 = 2µ |c3|2

Similarly decomposing |S(0)〉 into the eigenstates of B̂, we find

|S(0)〉 =

 c1

c2

c3


=

 c1

(c2 + c3 + c2 − c3)/2
(c2 + c3 − c2 + c3)/2


= c1

 1
0
0

+
c2 + c3

2

 0
1
1

+
c2 − c3

2

 0
1
−1


= c1

 1
0
0

+
c2 + c3√

2
1√
2

 0
1
1

+
c2 − c3√

2
1√
2

 0
1
−1


= c1|B3〉+

c2 + c3√
2
|B1〉+

c2 − c3√
2
|B2〉
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So, we see that if we measure observable B, then we get

Eigenvalue Probability

b1 = λ
|c2 + c3|2

2

b2 = −λ |c2 − c3|2

2
b3 = 2λ |c1|2

4. Problem 4. Some commutator relations.
(a.) Prove the following commutator identity:

[ÂB̂, Ĉ] = Â[B̂, Ĉ] + [Â, Ĉ]B̂

Solution: Beginning with the right hand side

Â[B̂, Ĉ] + [Â, Ĉ]B̂ = Â(B̂Ĉ − ĈB̂) + (ÂĈ − ĈÂ)B̂
= ÂB̂Ĉ − ÂĈB̂ + ÂĈB̂ − ĈÂB̂
= ÂB̂Ĉ − ĈÂB̂
= [ÂB̂, Ĉ]

So, the equality is proven. (b.) Show that

[xn, p̂] = ih̄nxn−1

Solution: As usual we include a dummy function to absorb our differentiation

[xn, p̂]f(x) =
[
xn,

h̄

i

d

dx

]
f(x) = xn

h̄

i

d

dx
f(x)− h̄

i

d

dx
(xnf(x))

= xn
h̄

i

d

dx
f(x)− xn h̄

i

d

dx
f(x)− h

i
nxn−1f(x)

= − h̄
i
nxn−1f(x) =⇒ [xn, p̂] = ih̄nxn−1

(c.) Show more generally that

[f(x), p̂] = ih̄
df

dx

for any function f(x).

Solution: Once again employing the dummy function procedure

[f(x), p̂]g(x) =
[
f(x),

h̄

i

d

dx

]
g(x) = f(x)

h̄

i

d

dx
g(x)− h̄

i

d

dx
(g(x)f(x))

= f(x)
h̄

i

d

dx
g(x)− f(x)

h̄

i

d

dx
g(x)− g(x)

h

i

d

dx
f(x)

= −g(x)
h

i

d

dx
f(x) =⇒ [f(x), p̂] = ih̄

df

dx
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5. Problem 5. Quantum Simple Harmonic Oscillator
In this problem, we derive the properties of the simple harmonic oscillator that exists
in the realm of quantum mechanics.
The Energy (Hamiltonian operator) of a simple harmonic oscillator with mass M and
angular frequency ω in classical mechanics is

H =
p2

2m
+
mω2

2
x2

Quantizing above classical Hamiltonian yields the quantum mechanical Hamiltonian for
a simple harmonic oscillator which is

Ĥ =
p̂2

2m
+
mω2

2
x̂2

At a first glance, this looks just like the classical Hamiltonian. But don’t be fooled - the
important difference here is that the momentum and position are represented by the
operators p̂ and x̂ respectively, since both are observables. (Remember that in quantum
mechanics any observable (things you can measure) are represented by an operator).

(a.) Let us define the following non-Hermitian operator â and its Hermitian conjugate â†:

a =
ωmx̂+ ip̂√

2ωmh̄
a† =

ωmx̂− ip̂√
2ωmh̄

Inverting these relations, derive the following position and momentum operators x̂ and p̂:

x̂ =

√
h̄

2mω
(â+ â†)

p̂ = −i
√
h̄mω

2
(â− â†)

Solution: Adding â and â† we find

â+ â† =
ωmx̂+ ip̂√

2ωmh̄
+
ωmx̂− ip̂√

2ωmh̄

=
2ωmx̂√
2ωmh̄

=

√
2mω
h̄

x̂

so that x̂ =

√
h̄

2mω
(â+ â†)

Similarly, we could subtract â† from â to obtain

â− â† =
ωmx̂+ ip̂√

2ωmh̄
− ωmx̂− ip̂√

2ωmh̄

=
2ip̂√
2ωmh̄

= i

√
2

ωmh̄
p̂

13



so that p̂ = −i
√
ωmh̄

2
(â− â†)

(b.) Using the commutation relation [x̂, p̂] that we derived in class, show the following
commutation relation:

[â, â†] = 1

Solution: We calculate the commutator [x̂, p̂] with our position and momentum operators expressed
in terms of â and â†.

[x̂, p̂] = −i
√

h̄

2mω

√
ωmh̄

2
(â+ â†)(â− â†)

i

√
h̄

2mω

√
ωmh̄

2
(â− â†)(â+ â†)

= −i h̄
2

(â2 + â†â− ââ† + â2
†
)

+i
h̄

2
(â2 − â†â+ ââ† + â2

†
)

= ih̄(ââ† − â†â)
= ih̄[â, â†]

And since [x̂, p̂] = ih̄ we have [â, â†] = 1

(c.) Let us define a characteristic length of an oscillator x0 =

√
h̄

mω
. Then show that

â =
1√
2

(
x̂

x0
+ x0

d

dx

)
â† =

1√
2

(
x̂

x0
− x0

d

dx

)

Solution: Simplifying â, we have

â =
ωmx̂+ ip̂√

2ωmh̄

=
ωm√
2ωmh̄

x̂+
i√

2ωmh̄
h̄

i

d

dx

=
1√
2

(√
ωm

h̄
x̂+

√
h̄

ωm

d

dx

)

=
1√
2

(
x̂

x0
+ x0

d

dx

)
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The derivation for â† is exactly the same as the one for â except we have a minus, instead of a plus,
sign infront of the momentum operator. Therefore for â† we have

â† =
1√
2

(
x̂

x0
− x0

d

dx

)
(d.) Now, putting everything together, show that the (quantum) Hamiltonian for a sim-
ple harmonic oscillator is

Ĥ = h̄ω

(
â†â+

1
2

)
So we have now reduced the problem to that of finding the eigenvalues of the occupation
number operator

n̂ = â†â

Solution: Writing out our Hamiltonian Operator, we have

Ĥ =
p̂2

2m
+
mω2

2
x̂2

= − h̄mω
2

(â− â†)2

2m
+
mω2

2
h̄

2mω
(â+ â†)2

= − h̄ω
4

(â2 − ââ† − â†â+ â2
†
)

+
h̄ω

4
(â2 + ââ† + â†â+ â2

†
)

=
h̄ω

2
(ââ† + â†â)

=
h̄ω

2
(â†â+ 1 + â†â)

=
h̄ω

2
(2â†â+ 1) = h̄ω

(
â†â+

1
2

)
In the second to last line, we used the commutation relation [â, â†] = 1 to write ââ† = â†â+ 1.

(e.) Using the result from problem 4a, show that

[n̂, â†] = â†

[n̂, â] = −â

Solution: The result from problem 4a is

[AB,C] = A[B,C] + [A,C]B

Using this result in the following commutation relation, we have

[n̂, â†] = [â†â, â†]
= â†[â, â†] + [â†, â†]â
= â† · 1 + 0
= â†
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Similarly, for the other commutation relation

[n̂, â] = [â†â, â]
= â†[â, â] + [â†, â]â
= 0 + (−1)â
= −â

In both derivations, we used the following results:

[â, â†] = 1
[â, â] = [â†, â†] = 0

The first result was derived in (b). The second result is the obvious statement that ââ = ââ and
â†â† = â†â†. (f.) Now, show that if |n〉 is an eigenstate of n̂ with an eigenvalue n, then
â|n〉 is an eigenstate of n̂ with an eigenvalue n+ 1.

Solution: As a given, we have
n̂|n〉 = â†â|n〉 = n|n〉 (2)

Calculating n̂â†|n〉, we find

n̂â†|n〉 = â†ââ†|n〉
= â†(â†â+ 1)|n〉
= â†â†â|n〉+ â†|n〉
= â†n|n〉+ â†|n〉
= (n+ 1)â†|n〉

So
n̂â†|n〉 = (n+ 1)â†|n〉

From Eq,(2), we may be tempted to write â†|n〉 = |n+ 1〉 so that our final result can be written as

n̂â†|n+ 1〉 = (n+ 1)â†|n+ 1〉

However, this definition of |n+ 1〉 does not fit our requirement for normalization. We can see this by
assuming the n+ 1 and n state are both normalized, that is 〈n+ 1|n+ 1〉 = 1 and 〈n|n〉 = 1. If we
have â†|n〉 = |n+ 1〉 then

〈n+ 1|n+ 1〉 = 〈n|ââ†|n〉
= 〈n|â†â+ 1|n〉
= 〈n|â†â|n〉+ 〈n|n〉
= 〈n|n|n〉+ 1
= n+ 1 6= 1 (in general)

So if â†|n〉 = |n+ 1〉 then 〈n+ 1|n+ 1〉 = n+ 1 6= 1 and our n+ 1 state is not properly normalized.
We must include some numerical factor in order to ensure the normalization of the state. So, we let
â†|n〉 = c1|n + 1〉 where c1 is our arbitrary numerical factor. If we go through the same calculation
for 〈n+ 1|n+ 1〉 we find that

〈n+ 1|n+ 1〉|c1|2 = (n+ 1)
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So, in order to ensure the normalization of |n+ 1〉, c1 must equal
√
n+ 1 and we have therefore have

the formula
â†|n〉 =

√
n+ 1|n+ 1〉 (3)

(g.) It turns out that |0〉 is an eigenstate of n̂ with the lowest possible eigenvalue n = 0
(we’re going to take this as given, and skip the proof of this fact). This means that
the lowest possible energy of the simple harmonic oscillator is E0 = 1

2 h̄ω. Using (f.),
construct all other eigenstates of the Hamiltonian and their corresponding eiegnenergies.
In particular, show that the allowed energies and the energy eigenstates of a quantum
simple harmonic oscillator are

En =
(
n+

1
2

)
h̄ω (wheren = 0, 1, 2, ..)

|n〉 =
1√
n!

(â†)n|0〉

Solution: If |0〉 is an eigenstate of the hamiltonian with eigenvalue E0 = 1
2 h̄ω. Then by definition

we have

Ĥ|0〉 = h̄ω

(
â†â+

1
2

)
|0〉 =

1
2
h̄ω|0〉

Using Eq (3)we can construct states excited states higher than |0〉. For example,

|n+ 1〉 =
1√
n+ 1

â†|n〉

|1〉 =
1√
1
â†|0〉

|2〉 =
1√
2
â†|1〉 =

1√
2 · 1

â†|0〉

|3〉 =
1√
3
â†|2〉 =

1√
3 · 2

â†|1〉 =
1√

3 · 2 · 1
â†|0〉

|4〉 =
1√
4
â†|3〉 =

1√
4 · 3

â†|2〉|2〉 =
1√

4 · 3 · 2
â†|1〉 =

1√
4 · 3 · 2 · 1

â†|0〉

So we see that, in general

|n〉 =
1√
n!
|0〉
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To compute the eigenvalue of the state |n〉 we apply the hamiltonian operator to our arbitrary state

Ĥ|n〉 = h̄ω

(
â†â+

1
2

)
|n〉

= h̄ω

(
n̂+

1
2

)
|n〉

= h̄ω

(
n̂|n〉+

1
2
|n〉
)

= h̄ω

(
n|n〉+

1
2
|n〉
)

= h̄ω

(
n+

1
2

)
|n〉

In the foruth line, we replaced the operator n̂ with the number n because of the relation n̂|n〉 = n|n〉 stated
in (f). So if we have our eigenstate-eigenenergy definition as Ĥ|n〉 = En|n〉 then we see that

En = h̄ω

(
n+

1
2

)
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