
One-Page Summaries January 2022

Statistical physics of the symmetric group
Computing the partition function and order parameter for a system whose microstates are elements of the

symmetric group

1 Introduction
The partition functions for most simple statistical physics models (e.g., Ising Model, Ideal Gas Model, Potts
Model) involve summations over a set of identically distributed independent variables. Consequently, when
such systems consist of N particles, the total number of system microstates scales as V N where V is the
number of microstates available to a single particle.

But what if we considered an N particle system where the microstates available to one particle affected
those available to another? A simple choice in this direction is to consider a systemwheremicrostates are the
various permutations of objects in an initial list. More formally, we can say such microstates are elements of
the symmetric group and analyzing the simplest such statistical physics model for such microstates yields
the statistical physics of the symmetric group.

2 Main Result
Say we have a statistical physics system where the microstates are elements of the symmetric group SN . We
denote such microstates as σ and note that they map integers to integers. Formally we represent the group
identification as σ ∈ SN , and the mapping property as σ : N → N. As an initial model, we take the energy
of a particular microstate to be HN [σ] = λ

∑N
i=1(1 − δi,σ(i)) where δi,j is the Kronecker delta and λ > 0. In

other words, across all i for every σ(i) that does not map to i, there is an energy cost of +λ in the system.
This energy cost should lead to the system settling into the identity mapping microstate (σ(i) = i for all i)
at low temperatrues. Computing the partition function for this system gives us

ZN (β∆) =
∑
σ∈SN

exp (−βHN [σ]) =
∫ ∞

0
dx e−x

(
1 + (x− 1)e−β∆

)N
, (1)

where the discrete summation is over all elements of the symmetric group. The order parameter for this
system is 〈j〉 = 〈

∑N
i=1(1−δi,σ(i))〉, which represents the average number of deranged elements in the system

where a "deranged element" is one for which σ(i) 6= i. Considering the integral in Eq.(1) in theN � 1 limit,
we find a temperature dependent expression for 〈j〉:

〈j〉 = N − eβ∆. (2)

Taking T →∞ in Eq.(2) yields 〈j〉 ' N meaning that at large temperature (where entropy dominates) the
system occupies the most deranged microstates. Conversely, Eq.(2) suggests that below the temperature
kBTc = ∆/ lnN , the system settles into the most ordered microstate in which σ(i) = i for all i.

3 Implications
With the basic state space presented abovewe can consider increasingly complexHamiltonians and systems.
Defining j =

∑N
i=1(1− δi,σ(i)), we can consider the new energy function E(j) = λ1j+λ2j

2/2N . This energy
function yields a more complex order parameter than that in Eq.(2), and we find that the associated system
has two critical temperatures andmultiple phase coexistence boundaries. The fact that such a simple energy
function yields such complex thermal behavior suggests that having a "non factorizable" state space (like
one defined by permutations of a list) results in thermal behavior that can’t be encompassed by the simple
statistical models whose total microstate space is just a product of the spaces of its constituent particles.
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