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Duality and Description

These notes1 are part of a series concerning ”Motifs in Physics” in which we highlight recurrent concepts, techniques,
and ways of understanding in physics. In these notes we discuss the concept and role of duality: Having two mutually
valid, but distinct, physical descriptions of a system.

The concept of duality
For systems which are said to exhibit duality, the basic idea is that there is a way to mathematically model the
system in two ways each of which is independent of the other and both of which are valid. Moreover, there
must be a way to transform one model into the other and applying the transformation twice should return
us to the original model. Thus, in a duality, we have two ways to describe a physical system in addition to
a dictionary (which is an involution2) which maps between them.

Figure 1: Schematic representation of a duality. In order to have a duality one needs two mutually valid and
independent physical models or descriptions in addition to a dictionary translating between them. Applying
the translation twice returns us to the original description.

Modeling physical systems can often be difficult because the physical variables to which we have access
are not always the variables we need for our models. So, having two physical descriptions of the same
system, where each description is defined by a different set of dynamical variables, affords us additional
flexibility in analyzing the system.

However, a general accounting of dualities in physics can become quite confused because the word ”du-
ality” has been known to refer to rather different things. Historically, duality has referred to:

1. Duality between variables: When it is possible to exchange sets of dynamical variables in a system
while leaving the dynamical equations unchanged.

2. Duality between physical formalisms: When it is possible to reformulate the calculational apparatus
of a theory by computing the Legendre transform of a physical quantity.

3. Duality between systems: When two systems can be shown to be equivalent when each one is con-
sidered in the appropriate limiting case.

Still, in spite of these differences, all dualities have the common properties mentioned above: they consist of
two ways of characterizing a physical system along with a dictionary to map between these two ways, and, if
the mapping is applied twice, we return to the original physical characterization. In the subsequent sections,
we will discuss the various types of dualities as they arise in physics, give toy-examples that exhibit basic
features of the dualities, and then discuss real examples of dualities in physics. Our examples are drawn
from classical physics and modern physics and we end by describing the ”Wave-particle duality” which is
the most famous duality, but does not fit our formal definition of duality.

1Inspired by a blog post by Philip Tanedo
2A function or transformation f which takes x to f(x) is an involution if it is its own inverse, namely, if

f
(
f(x)

)
= x. (1)
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Duality between variables
A duality exists between variables when it is possible to transform sets of variables into one another while
leaving the dynamical equations unchanged.

Such transformations are considered ”dualities” rather than symmetries because, firstly, these transfor-
mations do not form a group under which infinitesimal variants exist, and secondly, these transformation
move between distinct dynamical variables rather than different forms of a single dynamical variable.

Often, the variables that we use to define a physical system are the ones which, historically, have been
the easiest to measure. However, dualities between variables help us realize there are more fundamental
ways to characterize a system beyond our biases established by experimental accessibility.

Toy Example: Variables of an Oscillator
It is easy to construct a simple model of this type of duality. Say we have the following
dynamical equations relating the time evolutions of R and L:

Ṙ(t) = −Ω

λ
L(t) (2)

L̇(t) = ΩλR(t). (3)

If we make the transformations

L(t)→ −λR(t) and R(t)→ L(t)/λ, (4)

then the two equations are left unchanged. Thus, we can say there is a duality between
L(t) and R(t). Indeed, taking both equations together leaves us with the identical oscil-
lator equations

R̈(t) = −Ω2R(t) and L̈(t) = −Ω2L(t). (5)

We can then use either R(t) or L(t) when characterizing the dynamics of the system gov-
erned by Eq.(2) and Eq.(3).

Example: Electro-Magnetic duality

Historically, the first duality of field theory physicists discovered was the one relating electric and magnetic
fields. This duality is seen most transparently in the source-free Maxwell equations which exhibit symmet-
rical dynamics for the electric and magnetic fields. By applying the correct transformation, we can convert
the equations governing the spatial and temporal evolution of the electric field into those governing the
spatial evolution of the magnetic field and vice versa (See Fig. 2). This duality is not at all incidental and in
fact what we distinguish as the electric and magnetic fields stems from the bias of our particular reference
frame.

Figure 2: Duality of Maxwell’s Equations
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In much the same way that special relativity tells us that the distances and time intervals we measure
depend on the frame in which we measure them, what we define as the electric and magnetic fields depends
on how we’re moving relative to the charge and current distributions which create them (See chapter 5 of
[1] for a discussion).

Duality between formalisms
A duality exists between physical formalisms when it is possible to take the Legendre transform of the
physical quantity (often an energy or some generalized potential) foundational to one formalism and obtain
the physical quantity foundational to the other formalism.

This type of duality was discovered in mechanics in the mid-19th century, and it is thus, historically, the
first duality of physics. However, it is not often seen as a duality today since the term ”duality” is usually
reserved for the type of duality that we will discuss in the next section. However, since Legendre transforms
provide a precise dictionary between functions and because the Legendre transform of a Legendre trans-
form is a net identity operation (and hence the Legendre transform is an involution transformation), we can
consider physical formalisms related through Legendre transforms as duals of one another.

Toy Example: Energy and Co-energy of Capacitor Plates
As a simple example of duality between formalisms, we can consider energy and ”co-
energy” [2] in electrodynamics.
Say we have two capacitor plates separated by a distance x and with total capacitance
C(x). We want to compute the force between these capacitor plates, but we want to do
so from two perspectives. By one perspective, the charge Q on the capacitor plates is
taken to be held at a constant value, and the potential V between the plates changes as
we change x. In the second perspective, the potential V between the two plates is held
constant, and the charge Q changes as we change x. Regardless of what perspective we
choose, we should find the same force and hence the same dynamics for each potential.
In this way, the two ways to conceptualize how charge and potential energy flow between
the plates are dual to one another.
First, we define the energy of these capacitor plates from the first perspective. For plates
of capacitance C(x) and a charge Q on each plate, the potential energy is

U(Q, x) =
Q2

2C(x)
. (6)

Adding charge to the system increases the energy due to the potential difference between
the two plates, and increasing the distance between the two plates increases the energy
due to the attractive force between the two plates. Thus, the differential of the potential
energy U is

dU = V dQ− Fdx, (7)

from which we can infer

∂

∂Q
U(Q, x) = V and ∂

∂x
U(Q, x) = −F. (8)

Eq.(6) is the potential energy under the assumption that Q is the independent variable
and that V (according to the capacitance-charge-potential equation) with changes with x.
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Computing the force from Eq.(8), we find

F = − ∂

∂x
U(Q, x) =

Q2

2C(x)2
∂

∂x
C(x), (9)

which tells us how much force each capacitor plate exerts on its connecting wire.
Now, we will compute this force using the ”co-energy” of the capacitor plates, i.e., the
Legendre transform of Eq.(6) expressed in terms of V and x. Computing the differential
of V Q, we can show

V dQ = d(V Q)−QdV. (10)

Inserting this expression into Eq.(7), we find

dU∗ = QdV + Fdx, (11)

where we defined
U∗(V, x) = V Q(V )− U

(
Q(V ), x

)
. (12)

Q(V ) is the charge on a capacitor plate as a function of the potential difference between the
two plates. It is obtained by inverting the equation in the first equality of Eq.(8). Eq.(12)
defines the Legendre transform of U(Q, x) and is called the ”co-energy” (or co-potential
energy) of the capacitor. This co-energy has a relationship with force different from the
standard one. From Eq.(11), we can infer

∂

∂V
U∗(V, x) = Q and ∂

∂x
U∗(V, x) = F, (13)

indicating that, for this co-energy, the force is found simply by taking the derivative. Com-
puting Eq.(12) explicitly, gives us

U∗(V, x) =
1

2
V 2C(x). (14)

For U∗(V, x), the potential V is taken to be the independent variable with the charge
Q changing (according to the capacitance-charge-potential equation) with changing x.
Computing the force associated with this co-energy using Eq.(13), we obtain

F =
∂

∂x
U∗(V, x) =

1

2
V 2 ∂

∂x
C(x). (15)

Comparing Eq.(9) and Eq.(15), and usingQ/C = V , we see that the force computed from
the two formalisms is the same. Thus, although U∗ and U amount to dual perspectives
on whether charge or potential energy changes with changes in x, the two perspectives
lead to the same dynamics and hence the same physical results.

Example: Hamiltonian-Lagrangian duality

Students typically begin their study of classical mechanics with Newton’s laws. These laws are intuitive and
devoid of any difficult to visualize mathematical abstractions, but as one attempts to move from classical
mechanics to other physical theories like statistical mechanics or quantum mechanics, Newtonian mechanics
proves to be a poor starting point. This is because it uses concepts which do not have clear analogs when
we are not trying to model particle motions. Fortunately, there are two related formulations of mechanics
which are easier to extend because they are framed around the more generalizable concepts of energy and
action.

4



In analytical mechanics, we have a choice of whether to model a physical system with positions and
velocities or with positions and momenta. Using positions and velocities places us within the Lagrangian
formalism of mechanics where the equations of motion are defined by a system of second-order differential
equations, while using positions and momenta3 places us within the Hamiltonian formalism of mechanics
where the equations of motion are a system of coupled first-order differential equations.

Figure 3: Duality of Classical Mechanics
Because the two formalisms yield the same dynamics, they are equivalent descriptions of a physical

system. The dictionary which allows us to transform from the Lagrangian formalism to the Hamiltonian
formalism is the Legendre transform (See Fig. 3). Each of these formalisms has their own advantages outside
of classical mechanics. Hamiltoniains are useful in moving from classical mechanics to quantum mechanics
and statistical mechanics, whereas Lagrangians are useful in moving from classical field theory to quantum
field theory.

Example: Counting of States-Partition Function duality

When studying the thermal equilibrium properties of a system with a fixed number of particles, we can
choose how to characterize the system contingent on which parameters are constant. For a system with a
constant energyE, all the microstates of the system are equally probable and we study the system with what
is known as the microcanonical ensemble. Alternatively, if the system is at a constant temperature T , then
we study the system with what is known as the canonical ensemble. In the microcanonical ensemble the
defining thermodynamic potential is the entropy S written in terms of the number of microstates ΩN (E)
of the system as S = ln ΩN (E). In the canonical ensemble the defining thermodynamic potential is the
free energy F written in terms of the partition function ZN (β), where β = 1/kBT as F = − lnZN (β)4. In
statistical mechanics, we know that ZN (β) =

∫∞
0
dE ΩN (E)e−βE . This definition allows us to show that

the free energy of the canonical ensemble and the maximized entropy of the microcanonical ensemble are
related through a Legendre transform.

Figure 4: Duality of Statistical Mechanics. We use ' instead of full equality because
this duality arises from applying steepest descent to the Laplace transform which ex-
presses ZN in terms of ΩN .

3In mathematical parlance, we say the positions and velocities are in the tangent bundle of particle trajectories and positions and
momenta are in the cotangent bundle. The tangent and cotangent bundles contain vector spaces dual to one another and thus we can
see the set of positions and velocities as dual to the set of positions and momenta. Therefore, the mathematical motivation for the above
expressed duality is that two functions (the Hamiltonian and the Lagrangian) of mutually dual coordinates are dual physical models
of one another.

4We use dimensionless definitions of entropy and free energy because they simplify the Legendre transform in Fig. 4.
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The idea that the canonical ensemble and the microcanonical ensemble are on two sides of dual for-
malisms of statistical mechanics is not a typical one, but given that the free energy and the maximized
microcanonical-ensemble entropy are related through a a mathematical transformation which relates dual
descriptions of a system, i.e., the Legendre transform, this interpretation is consistent with our definition of
duality in Fig. 1 [3].

Duality between systems
A duality exists between two systems when the physical properties of the one system, considered in a certain
energy or parameter regime, reduce to the physical properties of the other system in a different energy or
parameter regime. In a modern context, this type of duality is often what physicists (primarily high-energy
and condensed-matter theorists) are referring to when they claim a theory exhibits a ”duality”.

Toy Example: Strong and Weak Coupling of Partition Functions
Consider the following toy model. Say we have two partition functions Z1(λ) and Z2(g)
which have the analytic forms

Z1(λ) = eλ
∫ ∞
1

dt
e−tλ

t
, Z2(g;N) =

N∑
n=0

(−1)nn! gn+1 (16)

where λ, g > 0. We take the two partition functions in Eq.(16) to describe two different
physical systems. Depending on whether you want to take these functions to be partition
functions as they occur in statistical mechanics or toy-analogs of the functional integrals in
QFT, you could, respectively, consider λ and g to both be inverse functions of temperature
or to both be coupling constants.
We will now explore a large λ-small g duality between Z1(λ) and Z2(g). Applying inte-
gration by parts successively to Z1(λ) we obtain

Z1(λ) =
1

λ
− 1

λ2
+

2!

λ3
− 3!

λ4
+ · · · . (17)

This series is divergent, but we can truncate it and use it as an approximation for Z1(λ)
for sufficiently large λ. Conversely, for sufficiently small g, the partition function Z2(g;N)
becomes

Z2(g;N) = g − g2 + 2!g3 − 3!g4 + · · · . (18)

Comparing Eq.(17) and Eq.(18), we see that the two partition functions are equivalent for
large λ and small g. More specifically, we have

Z1(λ� 1) ' Z2(g � 1;N). (19)

The dictionary is as follows: If we start from Z1(λ) and we want to know the large λ
behavior of the associated system, then we evaluate Z2(g;N) with g � 1, and we then we
make the transformation g → 1/λ. The reverse transformation can be similarly described,
and applying the transformations twice give us λ→ λ or g → g as we see in involutions.

Modern Dualities

We consider the duality defined in Eq.(19) as a toy-example of a strong-weak duality because the ”strong
coupling” (i.e., λ� 1) limit of one theory is shown to be equivalent to the ”weak coupling” (i.e., g � 1) limit
of another theory. The utility of this type of duality exists in the way this relationship allows perturbation
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theory to be applied to nonperturbative systems: Since systems with strong coupling cannot be analyzed
using general perturbation theory methods, being able to transform such systems into weakly coupled ver-
sions greatly increases our ability to study them.

In the 20th century, physicists have discovered many dualities of this type and all of them are geared
towards making analytically difficult problems more tractable.

o Gauge-Gravity duality: This is a specific form of a general class of conjectures framed around the
”holographic principle”. The holographic principle posits that for some physical systems in a definite
volume, the physics of the system can be characterized by properties at the boundary of that volume.
Similarly, the gauge-gravity duality posits that certain theories of gravity in d dimensions are equiva-
lent to certain quantum field theories in d− 1 dimensions. The duality has allowed physicists to study
abstract models of strongly coupled dualities by studying their analogous representation in the weakly
coupled gravity theory. It is more formally known as the AdS/CFT correspondence.

o Strong-Weak coupling duality: This is a generalization of the electro-magnetic duality discussed in
the first section. It states that the properties of the weakly interacting electric charges and strongly
interacting magnetic monopoles of one gauge theory (which can be seen as a generalization of electro-
dynamics) are equivalent to the strongly interacting electric charges and weakly interacting magnetic
monopoles of the dual theory. Magnetic monopoles have never been observed, so this duality is mostly
used to explore the theoretical properties of toy model gauge theories. This duality is more formally
known as S-duality.

o High T -Low T duality: For spins arranged in a two-dimensional square lattice, one finds that the
high temperature expansion of the partition function can be transformed into the low temperature
expansion of the partition function. Employing both expansions together allows one to compute the
critical temperature for the two-dimensional square Ising model much more simply than in the stan-
dard derivation. This duality is more formally known as the Kramers-Wannier duality.

Aside: Wave-Particle Duality

Anyone who has studied quantum mechanics has heard of the wave-particle duality. As far as dualities
go, the wave-particle duality is mostly a qualitative one stating that, on the subatomic level, ”particles”
like electrons and photons have both wave-like and particle-like properties and cannot be exclusively inter-
preted as either waves or particles. Thus the wave-particle duality is not a true duality because rather than
positing the equivalence between two mathematical formalisms, it concerns how best to interpret the single
mathematical formalism of position-space quantum mechanics.

Figure 5: Wave-particle ”duality” states that quantum systems have both wave-like and
particle-like properties.

The wave-particle duality was first suggested by Louis de Broglie in his dissertation and was made more
concrete by Schrödinger through the development of his wave equation. From the Schrödinger equation, it
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is apparent that although we can describe subatomic particles by specific masses and charges, these particles
can also be characterized by wave numbers and frequencies and can be delocalized like waves.

Given the fact that this duality does not fit into the standard picture of dualities given in Fig. 1—namely,
there are not two equivalent descriptions of a physics system nor is there a dictionary mapping between
them—physicists today think it is better to rename the duality ”wave-particle complementarity” which con-
tends that quantum systems cannot be well characterized by choosing a single side in the wave-particle
dichotomy; one always needs both perspectives to characterize the system.

What’s the point?
What is the point of having two ways to model a physical system or having one physical model which
is equivalent to another of a completely different physical regime? Dualities in general provide us with
greater flexibility in studying and applying physical theories and thus supplement our understanding of
the systems they model. Moreover, having two ways to model a physical system, both ways of which yield
consistent answers suggests there is a deeper physical mechanism or principle at work for which the two
ways are primarily special cases.
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