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Importance of Geometry

These notes are part of a series concerning ”Motifs in Physics” in which we highlight recurrent concepts, techniques,
and ways of understanding in physics. In these notes we discuss how physics has been (and continues to be) influenced
by geometry.

The First language of Physics
Although Newton is often credited with developing both calculus and the foundations of modern mechan-
ics, he kept the two largely separate in the Principia. That is, instead of using calculus to prove many of the
theorems concerning orbits and planetary motion (as is done in a mechanics course today) Newton worked
geometrically and developed his arguments in the tradition of proofs found in Euclid’s Elements.

For example, in proving that central forces lead to orbits which sweep out equal areas in equal times
Newton employed a geometric proof of the kind in Fig. 11, rather than the calculus-based proof grounded
in angular momentum conservation.

Figure 1: Geometric Proof of Kepler’s First Law: The star (the origin of the central force) is at S and the planet
moves sequentially from A to B to C to D in equal times.

Newton’s use of geometry in the Principia is perhaps not terribly surprising since geometry was the
first axiomatic and rigorously developed field of mathematics. Newton likely knew that a mathematically
inclined natural philosopher reading his work would have lent greater credibility to a formalism grounded
in geometry rather than in some less well understood new mathematical theory2.

But it is nevertheless noteworthy that many of the foundational elements of mechanics, now understood
through calculus and algebra, were initially expressed geometrically. On one level it is a reflection of the
fact that geometry has both a visual and analytical representation. On another level it reveals that since the
inception of modern theoretical physics, geometry has been crucial to the building and systematizing of
the discipline. Indeed, if physical laws are written in the language of mathematics, then geometry was the
first language of physics, and even long after Newton’s time, geometry continues to have a great, if often
unarticulated, influence on physics.

1Given that Cc ‖ SB, Dd ‖ Sc, AB = Bc, and BC = Cd, we can show that the triangles SAB, SBC, and SDC have equal areas.
2This is my historically unrigorous speculation. There is apparently some debate as to why Newton didn’t use calculus to derive

his results in the Principia [1].
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Geometry of Phase Space
In our notes on the evolution of time, we characterized physical systems by their dynamics, kinematics, and
the configuration spaces through which variables in the systems evolved. In classical systems, configuration
space is the space of possible values of the dynamical variables. However, because classical systems are
governed by second-order equations, they are defined by two degrees of freedom per particle per dimension.
Thus in addition to configuration space, classical systems are defined by a momentum space, the space of
possible values of the variables canonically conjugate to the dynamical variable. Together, the configuration
space and momentum space define what is known as the phase space of our system.

In classical systems there is an important result which underlies statistical mechanics and concerns the
geometry of our phase space. Say we have a large number of particles which comprise a volume in our phase
space, and we ask how does the phase-space volume these particles occupy change in time? This question
might seem arbitrary, but it is actually a crucial one because if we find (as we do) that certain properties of
our system’s phase space are independent of time, then we could ignore the specific time dynamics of those
properties.

This is precisely what Liouville’s theorem asserts: for energy conserving systems, the volume of phase
space the system occupies does not change in time. We depict this theorem schematically in Fig. 2.

Figure 2: Visual depiction of Liouville’s Theorem: As our system evolves in time, the phase-space ”volume”
(area in this case) our system occupies does not change (i.e., Γ(t1) = Γ(t2)).

Statistical physics provides coarse-grained models of systems with a very large number of degrees of
freedom. In statistical physics, we find that the probability to be in a particular microstate of the system is
defined by the volume of phase space corresponding to the energy of that microstate. Therefore, Liouville’s
theorem asserts that as a system with a large number of degrees of freedom evolves, the relative volumes
of various regions of the phase space (and hence the relative probabilities to be in those regions) does not
change either. From Liouville’s theorem, physicists have postulated the ergodic hypothesis, a fundamental
assumption of statistical physics which posits that time averages of thermal systems can be equated to phase-
space (or ensemble) averages. In mathematical form, the ergodic hypothesis can be written as shown in Fig.
3.

〈O〉 = lim
T→∞

∫ T

0

dtO (P(t),Q(t)) =

∫
dP dQO(P,Q) ρ(P,Q) [Ergodic Hypothesis] (1)

Figure 3: Ergodic Hypothesis: O is an observable we want to average over time. The time average 〈O〉 is
equivalent to the ensemble average over P (i.e., momentum) space and Q (i.e., configuration) space weighted
by the density ρ(P,Q) of the phase space.
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From the ergodic hypothesis, we can derive the canonical ensemble and all the other important ensem-
bles of statistical physics. Thus, retracing the argument, we see that our understanding of how the geo-
metrical properties of phase space change (or rather, do not change) in time allows us to study equilibrium
thermodynamics, a naively time-dependent theory, with no direct reference to time at all.

Geometrical Notations of Electrodynamics
Despite what many people (mathematicians included) think, much of the evolution of mathematics consists
not merely of developing new mathematical formalisms and concepts but also in finding new ways to clearly
and cogently express existing formalisms. These new ways of expressing old ideas then contribute to the
spread and further development of mathematics by allowing these ideas to be effectively employed by those
who did not discover them in the first place. Thus largely due to improvements in pedagogy, calculus, which
was cutting-edge research mathematics in the 17th and 18th century, can nowadays be learned and applied
by adolescents who spend most of their time thinking about other things.

Similarly, in the mid-to-late 19th century, the mathematical theory of electrodynamics was developed
primarily by and for physicists and mathematicians3, and it only spread to engineering after Heaviside
and Gibbs [2] developed the vector analysis language which gave it its modern form. When James Clerk
Maxwell first composed his Treatise on Electricity and Magnetism [3], he did not employ modern vector analysis
notation4 to express mathematical results in the theory. For example, when writing the formula which
defines the properties of the magnetic field, Maxwell would write, in full component glory,
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rather than the more compact forms

∇ · ~B = 0 , ∇× ~B = µ0
~J, (3)

which only came about after Heaviside and Gibbs’s work.
One could reasonably claim that the notational change in going from Eq.(2) to Eq.(3) is a trivial one

which contributes marginal additional insight to the phenomena of magnetism. However, as is generally
true, this notational change introduced the possibility of extending electromagnetism beyond the context
of its formulation. Given that it appears we live in a world with three spatial dimensions, it makes sense
that the laws of electromagnetism bear explicit reference to this dimensionality. But considering the pos-
sibility of extra dimensions would require that we generalize Maxwell’s equations in a way which is not
at all obvious in the cartesian representation of Eq.(2). Conversely, using differential geometry, the vector
analysis representation Eq.(3) can be more easily extrapolated to what is known as an exterior derivative,
a generalized derivative which consolidates the notion of gradient, divergence, and curl. The end result is
that all of Maxwell’s equations (not just the two in Eq.(3)) can be written in the compact and fully general
form (which makes no reference to dimensionality),

dF = 0 , d ? F = J, (4)

where d is the exterior derivative, F is the field two-form, J is the current three-form, and ? is the hodge dual
operator. 5

3Of course, experimentalists at the time, like Michael Faraday, did much work in exploring the experimental aspects of the theory.
4However, a very similar formalism of ”quarternions” did exist and was applied by Maxwell in the treatise.
5See Arapura’s Introduction to Differential Forms”x [4] for an elementary discussion of differential forms. See Sjamaar’s ”Mani-

folds and Differential Forms”x [5] for a less elementary discussion of differential forms.
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Duality between Geometry and Energy
For much of its early history, mathematical physics was concerned with understanding how physical quan-
tities evolved in a fixed background of space and time. But with Einstein’s theory of relativity, space and
time were consolidated into what was ever after known as spacetime and which, far from being the pristine
and static stage for the principal actors of the physical world, became an actor itself and was postulated to
evolve and change according to its own physical laws.

Our above discussions on the relevance of geometry to physics mostly involved how the mathematical
representations of our physical laws contained geometric undertones. But with general relativity, these
undertones are made explicit by promoting geometry to a defining feature of our spacetime. In relativity,
large energy densities lead to large curvatures of spacetime, so that what we experience as the gravity created
by a massive object is ”really” just our motion within the curved spacetime caused by the object’s energy
density.

Energy density =⇒ Curved spacetime [General Relativity] (5)

But again in the early 20th century, there developed another physical discipline which posited a relationship
between the geometry of spacetime and the energy contained within it. Quantum physics is not typically
seen as a subject which would cause us to reinterpret our understanding of space, but such a reinterpretation
is certainly present in the formalism underlying the Schrödinger equation. When we study quantum physics
in position space, our goal is to find the energy eigenfunctions and energy eigenvalues given a certain poten-
tial energy. So in a way which is obvious, the energy eigenvalues we find depend on our system’s potential
energy. However, in a way which is less obvious, but is nonetheless true (and arguably more profound), our
energy eigenvalues depend on the properties of the space which defines our system.

Space/spacetime =⇒ Energy spectrum [Quantum Physics] (6)

As a simple example of this fact consider a free quantum particle of mass m. If the particle is allowed to
move throughout all of the x domain (from x = −∞ to x = ∞), then solving the Schrödinger equation
would yield energy eigenvalues

Ek =
~2k2

2m
, (7)

where k takes on continuous values. However, if our particle could only exist within a finite domain (from
x = 0 to x = a), then we would find the same energy eigenvalues Eq.(7) except k would take on discrete
values.

This general relationship between space and energy appears as well in relativistic quantum physics.
There are typically nuances associated with extrapolating Schrödinger mechanics to a relativistic context6,
but ignoring such subtleties, we find that the relativistic Schrödinger equation (also known as the Klein-
Gordon Equation) in flat spacetime yields a continuous spectrum of energy values, but solving the rela-
tivistic Schrödinger equation equation in a spacetime with constant negative curvature (known formally as
AdS spacetime) yields a discrete spectrum of energy values.

In both of these quantum mechanical examples, we change the properties of space (or spacetime) in our
system and discover that the energy spectrum changes. Conversely, in general relativity when we change
the energy density of our system, the spacetime changes (See Fig. 4).

6See early chapters of [6] for a historical discussion.
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Figure 4: Duality between geometry and energy

In essence the physics of systems on large scales and the physics of systems on very small scales seem
to have correspondingly dualistic relationships with energy and geometry. Thus, it perhaps is no surprise
that attempt to find theories of quantum gravity require new interpretations of both geometry and energy
in physics.
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