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Indeterminacy and New Phenomena

These notes are part of a series concerning ”Motifs in Physics” in which we highlight recurrent concepts, techniques,
and ways of understanding in physics. In these notes we discuss and provide examples of how introducing indetermi-
nacy into a system leads to phenomena which are not present in the original non-deterministic analog of the system.

Demons of Determinism
In 1814 [1], Laplace made an early contribution to the field of thought of experiments by conjuring up an
intelligent entity who was capable of understanding physics. In fact this entity was so intelligent and so
adept at comprehending the patterns of our physical world, that Laplace claimed that such a being would
be able to predict, to arbitrary precision, everything that was happening in the universe then and in the
future, assuming that the being was given all the initial positions and forces of particles in the universe.

Laplace’s image of a masterful being (subsequently labeled a ”demon” by other scientists) carefully and
correctly working out the future dynamics of all physical systems was a woefully mechanistic vision of the
universe, but it was one which was a product of its time. The clockwork universe envisioned by Newton
allowed no room for imprecision in prediction. Such a universe was binary at least as far as physical results
were concerned: By the laws of physics, a launched projectile would or would not be at a found at a certain
height at a certain time. There was no in between, no room for probability or indeterminacy.

Now, the story goes that Laplace’s demon was vanquished in the early 20th century by quantum physics,
but in fact the ideal of a fully deterministic universe was relinquished a few decades after Laplace conceived
of it. Key to Laplace’s vision of the universe was the notion of reversibility, the belief that not only is the
future uniquely determined by the past, but the past is also uniquely determined by the future. However,
the mid-19th century development of statistical mechanics and thermodynamics introduced the concepts of
entropy and irreversibility and thus, in contradiction to Laplacian reversibility, affirmed the idea that there
are systems whose past dynamics cannot be determined by their current dynamics.

But beyond the basic fact that there are some systems in which precise Newtonian-like predictions of
particle motions are not possible, such random systems often exhibit phenomena quite foreign to their de-
terministic antecedents. Indeed we often find that imbuing a system with disorder or randomness, where
this randomness is precisely modeled in some well-defined physical formalism, leads to predictions of new
physical phenomena. This fact is so pervasive throughout physics it deserves to be stated on its own.

Indeterminacy and New Phenomena: Imbuing a system (or merely parts of that system) with
a probabilistic nature, allows previously non-interacting parts of the system to interact. In other
words, the indeterminacy in the system makes possible previously impossible phenomena.

In the following sections we will discuss a number of examples which exhibit indeterminacy and con-
sequently have properties and predictions not present in the corresponding deterministic system. We will
begin with a toy example to motivate the idea, and then turn to examples from physics. The most com-
mon physical examples consistent with this motif are found in quantum theory, but we will discuss two
non-quantum examples to demonstrate the idea’s generality.

Toy Model of Randomness
To develop a heuristic sense of the way randomness can lead to new interactions, we consider the following
toy model. Say we have three people: Alan, Billy, and Carl who interact through talking. The general system
is defined as follows:
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1. Alan and Billy can talk directly to each other, and Billy and Carl can talk directly to each other,
but Alan and Carl cannot talk directly to each other.

2. Alan’s and Carl’s positions are fixed. Billy can move, but his position is either precisely known or
defined by a probability distribution.

3. What is communicated between two people is instantaneous and specific to the moment of communi-
cation.

Figure 1: Interaction between A and B is not probabilistic.

In the ”deterministic” case, we assume that Billy’s position is precisely known. We can therefore postu-
late that Alan and Billy communicate if they are in the same position as do Carl and Billy if they are in the
same position. This situation is depicted in Fig. 1.

Figure 2: A and C have mutually exclusive interactions with B, so they have no effective interaction.

In such a scenario, Alan can talk to Billy, or Billy can talk to Carl, but because the conditions defining each
of their interactions are mutually exclusive (given that Alan and Carl can’t move), nothing Alan says to Billy
will ever be communicated to Carl and vice versa. In essence, if Billy were some how operating invisibly in
the background, Alan and Carl would not seem to communicate at all (See Fig. 2).

Figure 3: Interaction between A and B and between B and C is probabilistic.

In the ”random” case, we assume we don’t precisely know Billy’s position. There is instead a probability
distribution associated with Billy’s position and hence a probability distribution associated with each of his
possible interactions with Alan and Carl. This situation is depicted in Fig. 3.
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Figure 4: A and C each interact with a superposition of Bs, which leads to their effective interaction.

Over many different choices of Billy’s position in this system, we would find a certain probability density
of interaction between Alan and Billy and between Carl and Billy as shown in Fig. 3. In this situation, we
could compute the probability that Alan interacts with Billy and the probability that, at the same time1, Billy
interacts with Carl for each choice of xB . Then we could sum over different choices of xB , weighted by
the probability of effective interaction, to find the total probability of interaction between Alan and Carl.
This procedure is represented schematically in Fig. 4. In the end we would find that if Billy were operating
invisibly in the background, Alan and Carl would still be found to interact.

The most important aspect of this example is the introduction of a superposition of states to account
for the probabilistic nature of the system. In the deterministic scenario, there is no superposition because
states are known precisely. Thus mutually exclusive interactions between two parts of the system lead to the
two parts being effectively separated. But by introducing randomness, we are forced to sum over various
manifestations of the system weighted by each one’s probability of occurrence. Such summations lead to
effective interactions between parts of the system which would not otherwise interact.

The Strange Quantum
Quantum phenomena are often so strange and non-intuitive that one famous physicist claimed that “nobody
understands quantum mechanics” [?]. And yet contained within quantum mechanics is an idea which is
generalizable beyond quantum mechanics itself: New phenomena result when we make our system prob-
abilistic.The toy example above presented the basics of this idea, and in the list below we demonstrate it
through four examples from quantum mechanics.

• Quantum Tunneling: From classical mechanics, we know that a particle in a potential energy U(x)
must have energy E > U(x). Indeed such a particle could not exist in any region where the poten-
tial energy exceeds the energy. However, in quantum mechanics, a particle which classically does not
have enough energy to cross a potential energy barrier, can do so (although with exponentially decay-
ing probability). For example, alpha decay—the tunneling of an alpha particle through the nuclear
potential—occurs by this process. Fig. 5a.

• Casimir Effect: From Coulomb’s law, two electrically neutral and static objects should not experience
an electromagnetic interaction. However, when we consider the zero-point energy of the electromag-
netic field—a zero-point energy predicted by quantum electrodynamics and which is analogous to the
harmonic oscillator ground state—we find that there is a nonzero force between the two plates. This
phenomena (which has been experimentally verified) is known as the Casimir effect. Fig. 5b.

1For the sake of this example, we ignore the fact that such an interaction framework could violate causality.
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(a) Quantum Tunneling
(b) Casimir Effect

(c) Spontaneous Emission (d) Higgs Boson Decay into Photons

Figure 5: Quantum processes which do not occur in classical theory.

• Spontaneous Emission: The random decay of an atomic state to a lower orbital and the subsequent re-
lease of photons, should not occur if our electromagnetic field were purely classical: An unperturbed
atom in an eigenstate of its Hamiltonian should remain in that state. However, the electromagnetic
field is not purely classical. Rather space is filled with the zero-point energy of the quantum elec-
tromagnetic field—the same zero-point energy responsible for the Casimir effect—which continually
perturb the atomic state. These perturbations can jostle the atom out of its original state producing a
photon in the process. Fig. 5c.

• 2012 Discovery of Higgs: The Higgs boson is an electrically neutral particle, and therefore, from a
classical perspective, should not interact with photons. However, quantum mechanically, the Higgs
can decay into intermediate quark states which then couple to photons thus producing an effective
Higgs-photon interaction. This effective interaction exists at the foundation of the H → γ + γ decay
which was one of the processes through which the Higgs was discovered in 2012. Such a process
(shown in Fig. 5d) cannot occur classically.

Disorder and Thermal Fluctuations
Although quantum systems are perhaps the most natural physical example of how indeterminacy leads to
new interactions, there are many non-quantum systems where randomness leads to novel system properties.
We will discuss two physics examples here.

• Spins and Disorder
The standard physics picture of a permanent magnet consists of a system of spins arranged in a lattice
and interacting through a fixed coupling. Depending on the temperature and dimensionality of the
system, the spins could be in a “ferromagnetic phase” where all or most spins are aligned along a
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(a) Spin System
(b) Free Polymer Chain

Figure 6: Interactions which arise from disorder and thermal fluctuations. In Fig. 6a, non-interacting spins
are all collectively subjected to the same random magnetic field and can then be represented as having an
effective interaction. In Fig. 6b, a polymer chain in which each segment does not interact with any other
has an energy E(R) of 0 as a function of the end-to-end distance R. But the free energy F (R) defines the
thermal equilibrium state and is non-zero due to the entropy of the configuration.

specific direction or a “paramagnetic phase” where there is no direction of majority alignment without
the presence of a magnetic field.
If, however, we say that the interactions have disorder, that is if the interactions between spins are
drawn from a probability distribution, then a new phase of matter called the spin glass phase results.
In the spin glass phase, small clusters of spins are aligned along a specific direction, but the average
spin of the entire lattice is still zero.
Here’s a simple theoretical example (unrelated to spin glasses) of how random interactions in spin sys-
tems can lead to new phenomena. Consider the thermodynamics of a collection of N non-interacting
spins each coupled to the same magnetic field h (Fig. 6a). The partition function for such a system is

Z(h) =
∑
{si}

exp

(
βh

N∑
i=1

si

)
. (1)

For the system defined by Eq.(1), we see that different spins in the system do not interact because
the argument of the exponential (representing the energy of the system) only contains terms linear in
si. However, by making h a random variable2, we will find an effective interaction between different
spins.
Promoting h to a random variable requires that we associate it with a probability density. As a working
example, we assign to h the density

p(h) =
e−h

2/2σ2
h√

2πσ2
h

, (2)

where σ2
h is the (possibly temperature dependent) variance in the field. Averaging the partition func-

tion Eq.(1) over the possible values of h given in Eq.(2), we find the resulting effective partition function
between spins is

Zeff =

∫ ∞
−∞

dh√
2πσ2

h

e−h
2/2σ2

hZ(h)

2Making h a random variable in this way is akin to saying it fluctuates on the same time scale that the individual spins si fluctuate.
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=
∑
{si}

∫ ∞
−∞

dh√
2πσ2

h

e−h
2/2σ2

h exp

(
βh

N∑
i=1

si

)

=
∑
{si}

exp

β2σh
2

∑
i,j

sisj

 . (3)

We note that Eq.(3) has an exponential in which the argument (again representing the energy) has
terms multiplying two different spins. Thus, we thus see that the random magnetic field has led to
effective interactions between spins which were independent when the field was not random. We note
as well that these effective interactions go away as the uncertainty σh in the field goes to zero.

• Polymer Models
The statistical mechanics of polymer systems is formally studied through what is known as ideal chain
models. In the simplest form of these models, many individual straight line segments are joined to-
gether to form a chain in free space. There is no energy of interaction between each segment, so the
total energy E(R), whereR is the end-to-end distance of the chain, of such a system is zero. But when
we consider the thermodynamics of this system (by coupling it to a constant temperature heat bath,
for example), the chain obtains a non-zero free energy F (R) arising from the thermodynamic entropy
of the system (Fig. 6b). In thermodynamics, the free energy, rather than just the energy, determines
the thermal properties of a system, and in this case the free energy leads to an attractive force between
the two ends of the chain. This force arises specifially from the thermal randomness of the system: As
the temperature of the ideal chain goes to zero, so does the thermodynamic entropy, and thus so does
the attractive force between the two ends.

Different types of Randomness
From the above examples, we have seen how systems with randomness or uncertainty can exhibit phenom-
ena their non-random analogs do not. However, the reader may reasonably find issue with our grouping
of the disparate phenomena just discussed under the common title of ”indeterministic systems”. Specifi-
cally, the randomness in thermal systems is of a different type of randomness from that which defines spin
glasses, and both thermal randomness and glassy randomness are quite different from quantum random-
ness. Indeed, glassy randomness is a randomness in the interaction parameters which define a material and
is, as such, distinct from the randomness of a physical process. Moreover, while the randomness of thermo-
dynamics arises from an inherently non-random classical theory, the randomness of quantum mechanics is
(as far as we know) completely fundamental.

Still, the intention of this discussion was not to conflate many fundamentally different sources of indeter-
minacy, but to show that models which exhibit indeterminacy bear qualitatively similar properties in spite
of their distinct underlying physical mechanisms. The main property we find is that such random systems
lead to couplings and interactions between parts of the system which would otherwise not interact.
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