
Mobolaji Williams Motifs in Physics March 2, 2017

Oscillations, Superpositions, and Perturbations

These notes are part of a series concerning ”Motifs in Physics” in which we highlight recurrent concepts, techniques,
and ways of understanding in physics. In these notes we discuss how the linearity of dynamical equations is related to
oscillations, superposition principle, and perturbation theory.

Equations of Physics
A student once told me that physics was ”just mathematics” and that he expected to do well in the former
because he always did well in the latter. As the student walked blithely away confident in his future perfor-
mance, I struggled to articulate why his first assertion didn’t seem quite right. It seemed to be a conflation
between what is necessary and what is sufficient, a confusion between what is a property of a thing and
what is an adequate definition.

Now, it is true that physics uses mathematics and one needs to understand some mathematical ideas
in order to understand physics. However, physics cannot be completely reduced to mathematics because
the premises and principles of physical disciplines are inevitably grounded in an interpretation of physical
reality, rather than an interpretation non-material logic.

And yet these physical principles are not arbitrary and throughout all areas of physics their mathematical
representations have a common form. Namely, if F (t, x) is the dynamical function of interest in our system
(e.g., a vector in Hilbert space or a classical field), then the equation which governs F (t, x)’s dynamics in
space and/or time often has the form

Figure 1: General form of dynamical equation is physics. The differential operator D̂ is, most generally, a
linear combination of derivatives.

The source function Ω(F (t, x); t, x) is responsible for generating the non-trivial dynamics ofF (t, x). It can
be a function of F (t, x) or a function of some other variable which has a dynamical equation of its own. We
should note that D̂ cannot in practice be any linear combination derivatives, but rather its form is constrained
by fundamental symmetries of physics and by the independent variables relevant in our system. Also the
source function Ω(F, t, x), in certain physical regimes, can have derivative operator terms and nonlinear
terms which are physically dominant over the term D̂F .

As examples, some equations and their associated field of physics which bear the form in Fig. 1 are

– Gauss’s Law (Electrodynamics)
∇ · E(t, x) = ρ(t, x). (1)

– Klein Gordon Equation (Classical Field Theory)(
c−2∂2t −∇2 −m2c2/~2

)
φ(t, x) = J(t, x). (2)
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– Schrödinger Equation (Quantum Mechanics)

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉. (3)

Therefore we see that the form of dynamical equations shown in Fig. 1 can itself be seen as a physical motif
because it appears often throughout many fields of physics. But, more deeply, this form is connected to
three other common features of physical systems.

Oscillations, Superpositions and Perturbations
Related to this general form of dynamical equations are three mini-motifs which occur throughout physics:

◦ The Harmonic oscillator is everywhere
The universal form of the fundamental equations of physics Fig. 1 leads to the ubiquity of a particu-
lar physical model: the harmonic oscillator. In virtually every field of physics, a harmonic oscillator
system is studied on some level, and it is considered so archetypal and foundational to physics that
some physicists consider theoretical physics to be the practice of analyzing the harmonic oscillator at
ever-higher levels of abstraction1.
More generally, not only are oscillating system ubiquitous throughout physics but so too are decaying
systems, and together these two types of phenomena result from a common property of fundamental
equations of the form in Fig. 1. For such equations, if we study the system they model at low energies
or near their equilibrium (i.e., constant in time) configurations, we can linearize the equation such that
the dynamical variable F (t, x) appears at most to first order2. Namely, we obtain[

D̂ − Ω(1)(F0, t, x)
]
F (t, x) = Ω(0)(F0, t, x) +O

(
(F (t, x)− F0)2

)
, (4)

where Ω(k)(F0, t, x) is the kth order correction to Ω(F (t, x); t, x) when F (t, x) is expanded about the
low energy or equilibrium value F0.
It is generally known that when differential equations are linear in their dynamical function, their
solutions are linear combinations of complex exponentials ([1]). Complex exponentials in turn are
composed of sinusoids and/or exponential with real arguments. Thus, many systems in physics can
be studied as oscillations and decays in time and space because the equations which model them are
(in certain physical limits) linear.

Figure 2: Relationship between linearized dynamical equations and complex exponentials
1This is a paraphrase of a quote attributed to Sidney Coleman
2Often this equilibrium or low energy condition is the trivial statement that outside of an external perturbation, the dynamical

variable is zero. In quantum mechanics, however, the defining dynamical equation is always linear in the state ket so we don’t need to
consider quantum systems at low energy or near equilibrium for the following argument to apply.
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The explanation for the omnipresence of the quadratic-form potential (i.e., V (F (t, x)) = αF (t, x)2/2 +
· · · ) follows a similar logic. From the Lagrangian formalism of physics, we know that a dynamical
equation is linear in the dynamical variable, if and only if its associated energy is quadratic in the
dynamical variable3. And given that the energy is a quadratic function of the dynamical variable, the
potential energy (if it is non-zero) must also be a quadratic function of the dynamical variable. Thus,
whenever we consider a dynamical system near equilibrium or at low energies, we should expect to
find that its energy contains a ”harmonic oscillator” contribution of the form αF (t, x)2/2.

Aside: Exponentials are everywhere for a different reason!
Apart from sinusoidal functions, exponential functions (with real arguments) are one of the
most ubiquitous functions in physics. However, some important exponential functions in physics
have origins quite different from the linear-dynamical equation origins of sinusoids. For exam-
ple, in statistical physics and thermodynamics, the exponential

p(E) ∝ e−βE , (5)

(where E is energy and β is inverse temperature) is foundational in studying systems at or
near thermal equilibrium. Eq.(5) can be obtained by computing the probability distribution
which yields the maximum uncertainty under the constraint of fixed energy. In this calculation,
uncertainty is defined asa

S = −
∑
i

pi ln pi, (6)

where the sum is over the various energy states of the system. More interestingly, we can find
other famous exponential functions like Gaussians (e.g., e−ax2 ) and Gamma functions (e.g.,
e−bxxc−1) when we maximize Eq.(??) under different sets of constraints. Thus, the ubiquity of
exponential distributions and their generalizations throughout statistics can be seen as due to
our particular representation of uncertainty as Eq.(??).

aIn statistical mechanics, Botlzmann’s constant kB multiplies the right hand side, but we can imagine absorbing this
constant into a redefinition of the left hand side to make the entire expression dimensionless.

◦ Superposition
A general property of linear differential equations is that they often have multiple solutions, and the
most general form of their solution is a linear combination of the individual solutions. We call this the
superposition property. This property is physically relevant, for example, in electromagnetic systems
with complicated charge and current configurations. If we have a charge distribution composed of
N point charges from k = 1, . . . , N , and each charge k creates an electric field Ek, independent of the
other charges, then the net electric field is Enet = E1 + · · ·+EN , i.e., the sum of the electric fields of each
individual charge 4. In this example the superposition property arises from the linearity of Gauss’s
law, Eq.(1), but in general, superposition applies whenever a system is governed by a linear dynamical
equations.

3This is assuming the dynamical variable has a clear interpretation in terms of energy.
4That physically important quantities are equivalent to the sum of the contributions of their individual parts may seem obvious but

it is not generally true. For example, the total energy of a net electric field is not the sum of the energies of each individual field. Also,
in quantum physics probabilities are nonlinear (i.e., modulus squared) functions of probability amplitudes which leads to many of the
unique phase-dependent properties of quantum systems.
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D̂F1(t, x) = 0 F3(t, x) = αF1(t, x) + β F2(t, x)
=⇒

D̂F2(t, x) = 0 D̂F3(t, x) = 0

(7)

Figure 3: The superposition of solutions to homogeneous differential equations is also a solution
However, the superposition property does not always simplify calculations. An independent solution
to a linear dynamical equation is termed a mode. If for example, the dynamical equation is a wave
equation, a mode is identified by the wave number or angular frequency of the associated sinusoid.
To compute physical quantities in such systems we perform a weighted sum over the contributions of
each mode which can be problematic when these summations are infinite integrals.

Eclass
V
∼ ε0

2

∣∣∣∣∫ ∞
−∞

d3k
(2π)3

E(k) eik·x
∣∣∣∣2 ∼ convergent ,

Equant

V
∼
∫

d3k
(2π)3

~ωk ∼ divergent (8)

Figure 4: In classical electrodynamics the superposition of wave solutions yields a finite energy density.
In quantum electrodynamics the energy density of a photon is nominally infinite.

Indeed these summations workout just fine in the classical physics of fields and continuous media
(Fig. 4), but in quantum field theory such mode summations lead to the famous divergence problems
which necessitate renormalization theory.

◦ Nonlinearity and perturbation5

It goes without saying that not all the fundamental equations of physics are linear, and yet we are still
able to obtain useful results from them. This is because even when an equation is nonlinear we can
often approximate it as linear and then solve it iteratively in terms of solutions to the linear equation.
Thus the ubiquity of linear equations in physics is connected to the ubiquity of perturbation theory,
the general set of techniques used to solve nonlinear equations in terms of the solutions to their linear
approximations. As an example of perturbation theory, let’s perturbatively solve an insoluble cubic
equation6 which becomes a soluble quadratic equation in a certain limit.
We begin with the equation

αx2 − β = εx3 (9)

where α, β, and ε are all positive numbers. We take ε� 1, and assume that the solution to Eq.(9), can
be written as an expansion in ε:

x = x(0) + ε x(1) + ε2 x(2) + · · · , (10)

where x(k) for k ≥ 1 (called the kth order correction to the unperturbed system) is what we’re trying
to determine. We also assume the series Eq.(10) converges unless our solutions suggest otherwise.
The standard approach in perturbation theory is to substitute our perturbation series ansatz (i.e., Eq.(10))
into the equation we’re trying to solve (i.e., Eq.(9)), match terms of the same order in our perturbation
parameter on both sides of the equality, then use these matchings to determine the higher order cor-
rections. In this case, substituting the relevant equations, and matching coefficients of the same order
as ε on both sides of the equality we find the system of equations

αx2(0) − β = 0

5Unlike the previous two, this last min-motif is not exclusively related to the linearity of equations of motions.
6Cubic equations are actually soluble, but let’s assume we didn’t know this.
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2εα x(0)x(1) = εx3(0)

ε2α
(
x2(1) + 2x(2)x(0)

)
= 3ε2x2(0)x(1)

... (11)

Solving this system up to the second-order correction we find

x = ±
(
β

α

)1/2

+ ε
1

2α

(
β

α

)
± ε2 5

8α2

(
β

α

)3/2

+O(ε3). (12)

This was a non-physics example, but it still bears two main features of perturbative solutions to prob-
lems in physics. First, since the higher order corrections are organized as a power series in the per-
turbation parameter ε, we can only expect the perturbation series to converge to a finite value if the
dimensionless perturbation parameter ε is small (i.e., ε� 1). Second, each higher order correction can
be expressed in terms of the unperturbed solution,

√
β/α. From classical mechanics to quantum field

theory, the specific ways perturbation theory is implemented changes according to what we’re trying
to calculate, but these features are present all perturbative calculations.

Pursuing Why
In these notes we showed that the ubiquity of oscillations, the superposition principle, and perturbation
theory arises from the linearity of many fundamental equations in physics. But you could argue that we
merely replaced the question of why oscillations and superpositions are ubiquitous with the question of
why so many equations in physics are linear (or at least linear in a certain limit). Connected to this question
is the question of what we consider to be the starting point of a theory, namely, what do we take as the
premise/postulate from which all other results are derived. In modern physics, what is considered fun-
damental is not specifically the dynamical equation of a physical quantity, but the Lagrangian from which
that dynamical equation is derived. (I won’t get into the reasons for this but it has to do with how QFT is
formulated). So, rephrasing the question, we are essentially asking why do the Lagrangians for so many of
our physical systems, lead to linear (or approximately linear) dynamical equations, which themselves lead
to the oscillation and superposition properties cited above.

Answering this question about why Lagrangians take the form they do forces us to consider another
motif in physics: symmetry and simplicity.
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