
Mobolaji Williams Physics 143a Section Notes: March 1, 2017

On the Rotating Wave Approximation

In these notes we derive the formula for Rabi oscillations without the approximation used in Townsend.
Townsend’s approximation is more formally known as the rotating wave approximation, and it is applied when
we have near resonance quantum systems. In such systems, there is a system frequency ω0 and a driving
frequency ω, and whenever we are near resonance (i.e., ω ' ω0) we neglect terms proportional ei(ω+ω0)t

in lieu of the more slowly oscillating ei(ω−ω0)t. The claimed interpretation is that the fast oscillating term
ei(ω+ω0)t ”averages to zero”, but a more rigorous way to obtain the same result is to show how such terms
are not ultimately relevant in computing the probabilities of the quantum system.

Problem
1. General Two-state systems

Say we have a two-state system defined by the (time-independent) Hamiltonian (in the |±, z〉 basis)

Ĥ =

(
E1 W12

W21 E2

)
, (1)

where E1 and E2 (with E1 6= E2) are real quantities and W12 and W21 are complex quantities.

(a) Compute the energy eigenvalues of Ĥ , and show that the energy eigenstates are

|φ+〉 = cos
θ

2
|+, z〉+ sin

θ

2
eiφ|−, z〉, |φ−〉 = sin

θ

2
|+, z〉 − cos

θ

2
eiφ|−, z〉 (2)

where
tan θ =

2|W12|
E1 − E2

, eiφ =
W21

|W21|
, (3)

with θ ∈ [0, π].
(b) Invert the change of basis matrix implied by Eq.(2) to find the |±, z〉 states in terms of |φ±〉.
(c) Write the general time dependent state |ψ(t)〉 as a linear combination of |φ+〉 and |φ−〉 with the

appropriate time-dependent coefficients.
(d) Say our system begins in the state |ψ(0)〉 = |−, z〉. Compute the probability that the system is in

the state |+, z〉 at time t. (Express the final answer in terms of the parameters of the Hamiltonian)

2. Rabi Oscillations
Say we have a spin-1/2 particle in a magnetic field. The magnetic field can be divided into a constant
part B0 and an oscillatory part B1(t). The Hamiltonian of the system is then

Ĥ = −γ S · (B0 + B1(t)) , (4)

where γ is the gyromagnetic ratio and S = (Ŝx, Ŝy, Ŝz) is the spin operator vector.

(a) If the magnetic fields are B0 = −(ω0/γ)z and B1(t) = −(ω1/γ)(cos(ωt) x + sin(ωt)y), show that
the Hamiltonian Eq.(4) becomes

Ĥ =
~
2

(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)
. (5)
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(b) For the state |ψ(t)〉written in the |±, z〉 basis we have

|ψ(t)〉 = c+(t)|+, z〉+ c−(t)|−, z〉. (6)

Use the time dependent Schrödinger equation and Eq.(5) to write two coupled differential equa-
tions for c+(t) and c−(t).

(c) Define new functions α+(t) and α−(t) by setting

α+(t) = eiωt/2c+(t) α−(t) = e−iωt/2c−(t). (7)

This amounts to transforming the system to a frame rotating at the same angular frequency as
B1(t). Substitute these expressions into the coupled differential equations obtained in part (b).
What are the new coupled differential equations for α+ and α−?

(d) From the coupled differential equation in (b), reverse construct the ”Hamiltonian” for α+(t) and
α−(t) coefficients. What is the correspondence between this Hamiltonian and Eq.(1)

(e) Say our system begins in the state |ψ(0)〉 = |−, z〉. Using the above correspondence, compute the
probability that the system is in the state |+, z〉 at time t. (Express the final answer in terms of the
parameters of the Hamiltonian)

Solution
1. (a) For 2× 2 matrices, we know that the eigenvalues are given by

E± =
Tr Ĥ ±

√
(Tr Ĥ)2 − 4det Ĥ

2
. (8)

We thus find
E± =

1

2

[
E1 + E2 ±

√
(E1 − E2)2 + 4|W12|2

]
. (9)

To show that Eq.(2) are the eigenkets of the system with eigenvalues Eq.(9), we need to prove the
two equalities(

E1 − E+ W12

W21 E2 − E+

)(
cos θ2

sin θ
2e
iφ

)
?
= 0 ,

(
E1 − E− W12

W21 E2 − E−

)(
sin θ

2

− cos θ2e
iφ

)
?
= 0.

(10)
We will prove the first equality given that the proof of the second is similar. Toward this proof
we assume E1 > E2, without loss of generality, and thus find

E1 − E+ = E1 −
1

2

[
E1 + E2 ±

√
(E1 − E2)2 + 4|W12|2

]
=

1

2

[
E1 − E2 + (E1 − E2)

√
1 + 4|W12|2/(E1 − E2)2

]
= (E1 − E2)

[
1 +

√
1 + tan2 θ

]
= (E1 − E2)

[
1 + sec θ

]
= −(E1 − E2)

cos2 θ2
cos θ

. (11)

Similarly we find

E2 − E+ = −(E1 − E2)
sin2 θ2
cos θ

. (12)
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And using W21 = |W21|eiφ =W ∗12 we obtain the following system for the left equality of Eq.(10):

0
?
= −(E1 − E2)

sin2 θ2 cos
θ
2

cos θ
+ |W21| sin

θ

2

0
?
=

[
|W21| cos

θ

2
− (E1 − E2)

cos2 θ2 sin
θ
2

cos θ

]
eiφ. (13)

Applying trigonometric identities and factoring phases, we then obtain

0
?
=

[
−(E1 − E2)

tan θ

2
+ |W21|

]
sin

θ

2

0
?
=

[
|W21| − (E1 − E2)

tan θ

2

]
cos

θ

2
eiφ, (14)

both of which are valid by Eq.(3).
(b) The change of basis matrix to go from the |±, z〉 states to the |φ±〉 states is (by Eq.(2))

Ûz→φ =

(
cos θ2 sin θ

2e
iφ

sin θ
2 − cos θ2e

iφ

)
. (15)

Thus the change of basis matrix to go from the |φ±〉 states to the |±, z〉 states is

Ûφ→z = Û†z→φ =

(
cos θ2 sin θ

2

sin θ
2e
−iφ − cos θ2e

−iφ

)
, (16)

and we have

|+, z〉 = cos
θ

2
|φ+〉+ sin

θ

2
|φ−〉 (17)

|−, z〉 =
(
sin

θ

2
|φ+〉 − cos

θ

2
|φ−〉

)
e−iφ. (18)

The phase factor in |−, z〉 falls out of all physical quantities so we can neglect it, but we keep it
here for explicitness.

(c) For a system with Hamiltonian Ĥ and energy eigenvalues E±, an arbitrary state |ψ〉 is

|ψ(t)〉 = c+e
−iE+t/~|φ+〉+ c−e

−iE−t/~|φ−〉. (19)

(d) Our system begins in a state |ψ(0)〉 = |−, z〉 and thus we have

|ψ(0)〉 =
(
sin

θ

2
|φ+〉 − cos

θ

2
|φ−〉

)
e−iφ. (20)

From Eq.(19) we can infer

c+ = sin
θ

2
e−iφ , c− = − cos

θ

2
e−iφ. (21)

The time-dependent state is then

|ψ(t)〉 =
(
sin

θ

2
e−iE+t/~|φ+〉 − cos

θ

2
e−iE−t/~|φ−〉

)
e−iφ. (22)
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Therefore, the probability amplitude to be in the state |+, z〉 is

〈+, z|ψ(t)〉 =
(
sin

θ

2
e−iE+t/~〈+, z|φ+〉 − cos

θ

2
e−iE−t/~〈+, z|φ−〉

)
e−iφ

= sin
θ

2
cos

θ

2
e−iφ

(
e−iE+t/~ − e−iE−t/~

)
, (23)

and the probability to transition from |−, z〉 to |+, z〉 in a time t is

P−,z→+,z(t) = |〈+, z|ψ(t)〉|2 (24)

=
1

2
sin2 θ

[
1− cos

(
E+ − E−

~
t

)]
= sin2 θ sin2

(
E+ − E−

2~
t

)
, (25)

or with Eq.(3) and Eq.(9) we obtain

P−,z→+,z(t) =
4|W12|2

4|W12|2 + (E1 − E2)2
sin2

[
t

2~
√
(E1 − E2)2 + 4|W12|2

]
. (26)

2. (a) For the Hamiltonian Eq.(4) and the given magnetic fields we obtain

Ĥ =
(
Ŝxω1 cos(ωt) + Ŝyω1 sin(ωt) + Ŝzω0

)
=

~
2
(σ̂1ω1 cos(ωt) + σ̂2ω1 sin(ωt) + σ̂3ω0)

=
~
2

(
ω0 cos(ωt)− i sin(ωt)

cos(ωt) + i sin(ωt) −ω0

)
=

~
2

(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)
. (27)

(b) For the state |ψ(t)〉 = c+(t)|+, z〉+ c−(t)|−, z〉, the matrix form of the Schrödinger equation is

i~
d

dt

(
c+(t)
c−(t)

)
=

~
2

(
ω0 ω1e

−iωt

ω1e
iωt −ω0

)(
c+(t)
c−(t)

)
, (28)

or, written as a system of coupled differential equations,

i
d

dt
c+(t) =

ω0

2
c+(t) +

ω1

2
e−iωtc−(t) (29)

i
d

dt
c−(t) =

ω1

2
e−iωtc+(t)−

ω0

2
c−(t). (30)

(c) If we define new coefficients α+(t) and α−(t) according to

c+(t) = e−iωt/2α+(t) , c−(t) = eiωt/2α−(t), (31)

then the system of differential equations for α±(t) becomes

i
d

dt
α+(t) =

ω0 − ω
2

α+(t) +
ω1

2
α−(t) (32)

i
d

dt
α−(t) =

ω1

2
α+(t)−

ω0 − ω
2

α−(t). (33)
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(d) The Schrödinger equation for the coefficients α±(t) is then

i~
d

dt

(
α+(t)
α−(t)

)
=

~
2

(
ω0 − ω ω1

ω1 −(ω0 − ω)

)(
α+(t)
α−(t)

)
(34)

which suggests this ”rotating system” is governed by the the time-independent ”Hamiltonian”

ˆ̃
H =

~
2

(
ω0 − ω ω1

ω1 −(ω0 − ω)

)
. (35)

The correspondence between Eq.(35) and Eq.(1) is established through the transformations

E1 →
~
2
(ω0 − ω)

E2 → −
~
2
(ω0 − ω)

W21 →
~
2
ω1. (36)

(e) If our system is initially in the state |ψ(0)〉 = |−, z〉 and we want to find the probability to be in
the state |+, z〉 at time t, we compute

|〈+, z|ψ(t)〉|2 = |c+(t)|2 = |α+(t)|2, (37)

given c−(0) = 1, and α−(0) = 1 by corollary. However, with α±(t) governed by the ”Hamilto-
nian” Eq.(35), this probability is precisely what we computed more generally in Problem 1(d).
Thus we find (with the transformations Eq.(36)), Eq.(26) becomes

P−,z→+,z(t) =
ω2
1

(ω − ω0)2 + ω2
1

sin2
[
t

2

√
(ω − ω0)2 + ω2

1

]
, (38)

which is the Rabi oscillation formula.

Discussion
Through this problem we essentially showed that when we apply a certain time-dependent rotation (given
by Eq.(7)) to a spin-1/2 particle in an oscillatory magnetic field, we can effectively rotate away the oscillation
frequency of the magnetic field. The resulting Hamiltonian is then time-independent and depends on ω−ω0

(and not ω + ω0) and is amenable to the standard analysis for time-independent quantum systems. In the
two problems above, we showed this in reverse: starting with a calculation for the transition probability
in a general 2 × 2 Hamiltonian system, and then showing that the Hamiltonian of a spin-1/2 particle in a
time-dependent magnetic field can be made time-independent with the appropriate transformation.
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