On the Rotating Wave Approximation

In these notes we derive the formula for Rabi oscillations without the approximation used in Townsend. Townsend's approximation is more formally known as the rotating wave approximation, and it is applied when we have near resonance quantum systems. In such systems, there is a system frequency ω_{0} and a driving frequency ω, and whenever we are near resonance (i.e., $\omega \simeq \omega_{0}$) we neglect terms proportional $e^{i\left(\omega+\omega_{0}\right) t}$ in lieu of the more slowly oscillating $e^{i\left(\omega-\omega_{0}\right) t}$. The claimed interpretation is that the fast oscillating term $e^{i\left(\omega+\omega_{0}\right) t}$ "averages to zero", but a more rigorous way to obtain the same result is to show how such terms are not ultimately relevant in computing the probabilities of the quantum system.

Problem

1. General Two-state systems

Say we have a two-state system defined by the (time-independent) Hamiltonian (in the $| \pm, \mathbf{z}\rangle$ basis)

$$
\hat{H}=\left(\begin{array}{cc}
E_{1} & W_{12} \tag{1}\\
W_{21} & E_{2}
\end{array}\right)
$$

where E_{1} and E_{2} (with $E_{1} \neq E_{2}$) are real quantities and W_{12} and W_{21} are complex quantities.
(a) Compute the energy eigenvalues of \hat{H}, and show that the energy eigenstates are

$$
\begin{equation*}
\left|\phi_{+}\right\rangle=\cos \frac{\theta}{2}|+, \mathbf{z}\rangle+\sin \frac{\theta}{2} e^{i \phi}|-, \mathbf{z}\rangle, \quad \quad\left|\phi_{-}\right\rangle=\sin \frac{\theta}{2}|+, \mathbf{z}\rangle-\cos \frac{\theta}{2} e^{i \phi}|-, \mathbf{z}\rangle \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \theta=\frac{2\left|W_{12}\right|}{E_{1}-E_{2}}, \quad e^{i \phi}=\frac{W_{21}}{\left|W_{21}\right|}, \tag{3}
\end{equation*}
$$

with $\theta \in[0, \pi]$.
(b) Invert the change of basis matrix implied by Eq. (2) to find the $| \pm, \mathbf{z}\rangle$ states in terms of $\left|\phi_{ \pm}\right\rangle$.
(c) Write the general time dependent state $|\psi(t)\rangle$ as a linear combination of $\left|\phi_{+}\right\rangle$and $\left|\phi_{-}\right\rangle$with the appropriate time-dependent coefficients.
(d) Say our system begins in the state $|\psi(0)\rangle=|-, \mathbf{z}\rangle$. Compute the probability that the system is in the state $|+, \mathbf{z}\rangle$ at time t. (Express the final answer in terms of the parameters of the Hamiltonian)

2. Rabi Oscillations

Say we have a spin- $1 / 2$ particle in a magnetic field. The magnetic field can be divided into a constant part \mathbf{B}_{0} and an oscillatory part $\mathbf{B}_{1}(t)$. The Hamiltonian of the system is then

$$
\begin{equation*}
\hat{H}=-\gamma \mathbf{S} \cdot\left(\mathbf{B}_{0}+\mathbf{B}_{1}(t)\right) \tag{4}
\end{equation*}
$$

where γ is the gyromagnetic ratio and $\mathbf{S}=\left(\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right)$ is the spin operator vector.
(a) If the magnetic fields are $\mathbf{B}_{0}=-\left(\omega_{0} / \gamma\right) \mathbf{z}$ and $\mathbf{B}_{1}(t)=-\left(\omega_{1} / \gamma\right)(\cos (\omega t) \mathbf{x}+\sin (\omega t) \mathbf{y})$, show that the Hamiltonian Eq. (4) becomes

$$
\hat{H}=\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0} & \omega_{1} e^{-i \omega t} \tag{5}\\
\omega_{1} e^{i \omega t} & -\omega_{0}
\end{array}\right)
$$

(b) For the state $|\psi(t)\rangle$ written in the $| \pm, z\rangle$ basis we have

$$
\begin{equation*}
|\psi(t)\rangle=c_{+}(t)|+, \mathbf{z}\rangle+c_{-}(t)|-, \mathbf{z}\rangle . \tag{6}
\end{equation*}
$$

Use the time dependent Schrödinger equation and Eq.(5) to write two coupled differential equations for $c_{+}(t)$ and $c_{-}(t)$.
(c) Define new functions $\alpha_{+}(t)$ and $\alpha_{-}(t)$ by setting

$$
\begin{equation*}
\alpha_{+}(t)=e^{i \omega t / 2} c_{+}(t) \quad \alpha_{-}(t)=e^{-i \omega t / 2} c_{-}(t) . \tag{7}
\end{equation*}
$$

This amounts to transforming the system to a frame rotating at the same angular frequency as $\mathbf{B}_{1}(t)$. Substitute these expressions into the coupled differential equations obtained in part (b). What are the new coupled differential equations for α_{+}and α_{-}?
(d) From the coupled differential equation in (b), reverse construct the "Hamiltonian" for $\alpha_{+}(t)$ and $\alpha_{-}(t)$ coefficients. What is the correspondence between this Hamiltonian and Eq. (1)
(e) Say our system begins in the state $|\psi(0)\rangle=|-, \mathbf{z}\rangle$. Using the above correspondence, compute the probability that the system is in the state $|+, \mathbf{z}\rangle$ at time t. (Express the final answer in terms of the parameters of the Hamiltonian)

Solution

1. (a) For 2×2 matrices, we know that the eigenvalues are given by

$$
\begin{equation*}
E_{ \pm}=\frac{\operatorname{Tr} \hat{H} \pm \sqrt{(\operatorname{Tr} \hat{H})^{2}-4 \operatorname{det} \hat{H}}}{2} . \tag{8}
\end{equation*}
$$

We thus find

$$
\begin{equation*}
E_{ \pm}=\frac{1}{2}\left[E_{1}+E_{2} \pm \sqrt{\left(E_{1}-E_{2}\right)^{2}+4\left|W_{12}\right|^{2}}\right] . \tag{9}
\end{equation*}
$$

To show that Eq.(2) are the eigenkets of the system with eigenvalues Eq.(9), we need to prove the two equalities

$$
\left(\begin{array}{cc}
E_{1}-E_{+} & W_{12} \tag{10}\\
W_{21} & E_{2}-E_{+}
\end{array}\right)\binom{\cos \frac{\theta}{2}}{\sin \frac{\theta}{2} e^{i \phi}} \stackrel{?}{=} 0, \quad\left(\begin{array}{cc}
E_{1}-E_{-} & W_{12} \\
W_{21} & E_{2}-E_{-}
\end{array}\right)\binom{\sin \frac{\theta}{2}}{-\cos \frac{\theta}{2} e^{i \phi}} \stackrel{?}{=} 0 .
$$

We will prove the first equality given that the proof of the second is similar. Toward this proof we assume $E_{1}>E_{2}$, without loss of generality, and thus find

$$
\begin{align*}
E_{1}-E_{+} & =E_{1}-\frac{1}{2}\left[E_{1}+E_{2} \pm \sqrt{\left(E_{1}-E_{2}\right)^{2}+4\left|W_{12}\right|^{2}}\right] \\
& =\frac{1}{2}\left[E_{1}-E_{2}+\left(E_{1}-E_{2}\right) \sqrt{1+4\left|W_{12}\right|^{2} /\left(E_{1}-E_{2}\right)^{2}}\right] \\
& =\left(E_{1}-E_{2}\right)\left[1+\sqrt{1+\tan ^{2} \theta}\right] \\
& =\left(E_{1}-E_{2}\right)[1+\sec \theta] \\
& =-\left(E_{1}-E_{2}\right) \frac{\cos ^{2} \frac{\theta}{2}}{\cos \theta} . \tag{11}
\end{align*}
$$

Similarly we find

$$
\begin{equation*}
E_{2}-E_{+}=-\left(E_{1}-E_{2}\right) \frac{\sin ^{2} \frac{\theta}{2}}{\cos \theta} \tag{12}
\end{equation*}
$$

And using $W_{21}=\left|W_{21}\right| e^{i \phi}=W_{12}^{*}$ we obtain the following system for the left equality of Eq. (10):

$$
\begin{align*}
& 0 \stackrel{?}{=}-\left(E_{1}-E_{2}\right) \frac{\sin ^{2} \frac{\theta}{2} \cos \frac{\theta}{2}}{\cos \theta}+\left|W_{21}\right| \sin \frac{\theta}{2} \\
& 0 \stackrel{?}{=}\left[\left|W_{21}\right| \cos \frac{\theta}{2}-\left(E_{1}-E_{2}\right) \frac{\cos ^{2} \frac{\theta}{2} \sin \frac{\theta}{2}}{\cos \theta}\right] e^{i \phi} \tag{13}
\end{align*}
$$

Applying trigonometric identities and factoring phases, we then obtain

$$
\begin{align*}
& 0 \stackrel{?}{=}\left[-\left(E_{1}-E_{2}\right) \frac{\tan \theta}{2}+\left|W_{21}\right|\right] \sin \frac{\theta}{2} \\
& 0 \stackrel{?}{=}\left[\left|W_{21}\right|-\left(E_{1}-E_{2}\right) \frac{\tan \theta}{2}\right] \cos \frac{\theta}{2} e^{i \phi} \tag{14}
\end{align*}
$$

both of which are valid by Eq. (3).
(b) The change of basis matrix to go from the $| \pm, \mathbf{z}\rangle$ states to the $\left|\phi_{ \pm}\right\rangle$states is (by Eq. (2))

$$
\hat{U}_{\mathbf{z} \rightarrow \phi}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} e^{i \phi} \tag{15}\\
\sin \frac{\theta}{2} & -\cos \frac{\theta}{2} e^{i \phi}
\end{array}\right)
$$

Thus the change of basis matrix to go from the $\left|\phi_{ \pm}\right\rangle$states to the $| \pm, \mathbf{z}\rangle$ states is

$$
\hat{U}_{\phi \rightarrow \mathbf{z}}=\hat{U}_{\mathbf{z} \rightarrow \phi}^{\dagger}=\left(\begin{array}{cc}
\cos \frac{\theta}{2} & \sin \frac{\theta}{2} \tag{16}\\
\sin \frac{\theta}{2} e^{-i \phi} & -\cos \frac{\theta}{2} e^{-i \phi}
\end{array}\right)
$$

and we have

$$
\begin{align*}
|+, \mathbf{z}\rangle & =\cos \frac{\theta}{2}\left|\phi_{+}\right\rangle+\sin \frac{\theta}{2}\left|\phi_{-}\right\rangle \tag{17}\\
|-, \mathbf{z}\rangle & =\left(\sin \frac{\theta}{2}\left|\phi_{+}\right\rangle-\cos \frac{\theta}{2}\left|\phi_{-}\right\rangle\right) e^{-i \phi} \tag{18}
\end{align*}
$$

The phase factor in $|-, \mathbf{z}\rangle$ falls out of all physical quantities so we can neglect it, but we keep it here for explicitness.
(c) For a system with Hamiltonian \hat{H} and energy eigenvalues $E_{ \pm}$, an arbitrary state $|\psi\rangle$ is

$$
\begin{equation*}
|\psi(t)\rangle=c_{+} e^{-i E_{+} t / \hbar}\left|\phi_{+}\right\rangle+c_{-} e^{-i E_{-} t / \hbar}\left|\phi_{-}\right\rangle \tag{19}
\end{equation*}
$$

(d) Our system begins in a state $|\psi(0)\rangle=|-, \mathbf{z}\rangle$ and thus we have

$$
\begin{equation*}
|\psi(0)\rangle=\left(\sin \frac{\theta}{2}\left|\phi_{+}\right\rangle-\cos \frac{\theta}{2}\left|\phi_{-}\right\rangle\right) e^{-i \phi} . \tag{20}
\end{equation*}
$$

From Eq. 19 we can infer

$$
\begin{equation*}
c_{+}=\sin \frac{\theta}{2} e^{-i \phi}, \quad c_{-}=-\cos \frac{\theta}{2} e^{-i \phi} . \tag{21}
\end{equation*}
$$

The time-dependent state is then

$$
\begin{equation*}
|\psi(t)\rangle=\left(\sin \frac{\theta}{2} e^{-i E_{+} t / \hbar}\left|\phi_{+}\right\rangle-\cos \frac{\theta}{2} e^{-i E_{-} t / \hbar}\left|\phi_{-}\right\rangle\right) e^{-i \phi} \tag{22}
\end{equation*}
$$

Therefore, the probability amplitude to be in the state $|+, \mathbf{z}\rangle$ is

$$
\begin{align*}
\langle+, \mathbf{z} \mid \psi(t)\rangle & =\left(\sin \frac{\theta}{2} e^{-i E_{+} t / \hbar}\left\langle+, \mathbf{z} \mid \phi_{+}\right\rangle-\cos \frac{\theta}{2} e^{-i E_{-} t / \hbar}\left\langle+, \mathbf{z} \mid \phi_{-}\right\rangle\right) e^{-i \phi} \\
& =\sin \frac{\theta}{2} \cos \frac{\theta}{2} e^{-i \phi}\left(e^{-i E_{+} t / \hbar}-e^{-i E_{-} t / \hbar}\right) \tag{23}
\end{align*}
$$

and the probability to transition from $|-, \mathbf{z}\rangle$ to $|+, \mathbf{z}\rangle$ in a time t is

$$
\begin{align*}
P_{-, \mathbf{z} \rightarrow+, \mathbf{z}}(t) & =|\langle+, \mathbf{z} \mid \psi(t)\rangle|^{2} \tag{24}\\
& =\frac{1}{2} \sin ^{2} \theta\left[1-\cos \left(\frac{E_{+}-E_{-}}{\hbar} t\right)\right] \\
& =\sin ^{2} \theta \sin ^{2}\left(\frac{E_{+}-E_{-}}{2 \hbar} t\right), \tag{25}
\end{align*}
$$

or with Eq. (3) and Eq. (9) we obtain

$$
\begin{equation*}
P_{-, \mathbf{z} \rightarrow+, \mathbf{z}}(t)=\frac{4\left|W_{12}\right|^{2}}{4\left|W_{12}\right|^{2}+\left(E_{1}-E_{2}\right)^{2}} \sin ^{2}\left[\frac{t}{2 \hbar} \sqrt{\left(E_{1}-E_{2}\right)^{2}+4\left|W_{12}\right|^{2}}\right] \tag{26}
\end{equation*}
$$

2. (a) For the Hamiltonian Eq.(4) and the given magnetic fields we obtain

$$
\begin{align*}
\hat{H} & =\left(\hat{S}_{x} \omega_{1} \cos (\omega t)+\hat{S}_{y} \omega_{1} \sin (\omega t)+\hat{S}_{z} \omega_{0}\right) \\
& =\frac{\hbar}{2}\left(\hat{\sigma}_{1} \omega_{1} \cos (\omega t)+\hat{\sigma}_{2} \omega_{1} \sin (\omega t)+\hat{\sigma}_{3} \omega_{0}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0} & \cos (\omega t)-i \sin (\omega t) \\
\cos (\omega t)+i \sin (\omega t) & -\omega_{0}
\end{array}\right) \\
& =\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0} & \omega_{1} e^{-i \omega t} \\
\omega_{1} e^{i \omega t} & -\omega_{0}
\end{array}\right) \tag{27}
\end{align*}
$$

(b) For the state $|\psi(t)\rangle=c_{+}(t)|+, \mathbf{z}\rangle+c_{-}(t)|-, \mathbf{z}\rangle$, the matrix form of the Schrödinger equation is

$$
i \hbar \frac{d}{d t}\binom{c_{+}(t)}{c_{-}(t)}=\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0} & \omega_{1} e^{-i \omega t} \tag{28}\\
\omega_{1} e^{i \omega t} & -\omega_{0}
\end{array}\right)\binom{c_{+}(t)}{c_{-}(t)}
$$

or, written as a system of coupled differential equations,

$$
\begin{align*}
i \frac{d}{d t} c_{+}(t) & =\frac{\omega_{0}}{2} c_{+}(t)+\frac{\omega_{1}}{2} e^{-i \omega t} c_{-}(t) \tag{29}\\
i \frac{d}{d t} c_{-}(t) & =\frac{\omega_{1}}{2} e^{-i \omega t} c_{+}(t)-\frac{\omega_{0}}{2} c_{-}(t) \tag{30}
\end{align*}
$$

(c) If we define new coefficients $\alpha_{+}(t)$ and $\alpha_{-}(t)$ according to

$$
\begin{equation*}
c_{+}(t)=e^{-i \omega t / 2} \alpha_{+}(t), \quad c_{-}(t)=e^{i \omega t / 2} \alpha_{-}(t) \tag{31}
\end{equation*}
$$

then the system of differential equations for $\alpha_{ \pm}(t)$ becomes

$$
\begin{align*}
i \frac{d}{d t} \alpha_{+}(t) & =\frac{\omega_{0}-\omega}{2} \alpha_{+}(t)+\frac{\omega_{1}}{2} \alpha_{-}(t) \tag{32}\\
i \frac{d}{d t} \alpha_{-}(t) & =\frac{\omega_{1}}{2} \alpha_{+}(t)-\frac{\omega_{0}-\omega}{2} \alpha_{-}(t) \tag{33}
\end{align*}
$$

(d) The Schrödinger equation for the coefficients $\alpha_{ \pm}(t)$ is then

$$
i \hbar \frac{d}{d t}\binom{\alpha_{+}(t)}{\alpha_{-}(t)}=\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0}-\omega & \omega_{1} \tag{34}\\
\omega_{1} & -\left(\omega_{0}-\omega\right)
\end{array}\right)\binom{\alpha_{+}(t)}{\alpha_{-}(t)}
$$

which suggests this "rotating system" is governed by the the time-independent "Hamiltonian"

$$
\hat{\tilde{H}}=\frac{\hbar}{2}\left(\begin{array}{cc}
\omega_{0}-\omega & \omega_{1} \tag{35}\\
\omega_{1} & -\left(\omega_{0}-\omega\right)
\end{array}\right) .
$$

The correspondence between Eq. (35) and Eq.(1) is established through the transformations

$$
\begin{align*}
E_{1} & \rightarrow \frac{\hbar}{2}\left(\omega_{0}-\omega\right) \\
E_{2} & \rightarrow-\frac{\hbar}{2}\left(\omega_{0}-\omega\right) \\
W_{21} & \rightarrow \frac{\hbar}{2} \omega_{1} . \tag{36}
\end{align*}
$$

(e) If our system is initially in the state $|\psi(0)\rangle=|-, \mathbf{z}\rangle$ and we want to find the probability to be in the state $|+, \mathbf{z}\rangle$ at time t, we compute

$$
\begin{equation*}
|\langle+, \mathbf{z} \mid \psi(t)\rangle|^{2}=\left|c_{+}(t)\right|^{2}=\left|\alpha_{+}(t)\right|^{2} \tag{37}
\end{equation*}
$$

given $c_{-}(0)=1$, and $\alpha_{-}(0)=1$ by corollary. However, with $\alpha_{ \pm}(t)$ governed by the "Hamiltonian" Eq. (35), this probability is precisely what we computed more generally in Problem 1(d). Thus we find (with the transformations Eq. (36)), Eq.(26) becomes

$$
\begin{equation*}
P_{-, \mathbf{z} \rightarrow+, \mathbf{z}}(t)=\frac{\omega_{1}^{2}}{\left(\omega-\omega_{0}\right)^{2}+\omega_{1}^{2}} \sin ^{2}\left[\frac{t}{2} \sqrt{\left(\omega-\omega_{0}\right)^{2}+\omega_{1}^{2}}\right] \tag{38}
\end{equation*}
$$

which is the Rabi oscillation formula.

Discussion

Through this problem we essentially showed that when we apply a certain time-dependent rotation (given by Eq.(7)) to a spin-1/2 particle in an oscillatory magnetic field, we can effectively rotate away the oscillation frequency of the magnetic field. The resulting Hamiltonian is then time-independent and depends on $\omega-\omega_{0}$ (and not $\omega+\omega_{0}$) and is amenable to the standard analysis for time-independent quantum systems. In the two problems above, we showed this in reverse: starting with a calculation for the transition probability in a general 2×2 Hamiltonian system, and then showing that the Hamiltonian of a spin- $1 / 2$ particle in a time-dependent magnetic field can be made time-independent with the appropriate transformation.

