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Physics 143a – Workshop 1

On Vectors, Matrices, Eigenvalues, Eigenvectors, Spin Kets, and Hermitian Operators

Week Summary
o Vectors and Basis Vectors: A set of vectors {êj} is said to span Rn, if they satisfy

êi · êj = δij [Orthonomality], (1)
n∑
i=1

êTi êi = I [Completeness]. (2)

Only vectors which span Rn can act as the basis vectors for an arbitrary vector ~v ∈ Rn. The arbitrary
vector ~v can then be written as a linear combination of the basis vectors: ~v =

∑n
j=1 cj~ej

o Square Matrices: An n× n matrix Â has four important mathematical quantities:

– Eigenvalues/vectors: The eigenvalue λi and eigenvector ~ui of Â are the complex number and vector,
respectively, that satisfy

Â~vi = λi~vi. (3)

The eigenvalues of Â are found by solving the nth order polynomial equation

det (Â− λI) = 0, (4)

and the eigenvectors are found by solving for the vectors ~vi for each λ = λi solution to Eq.(4)
satisfying

(A− λi)~vi = 0. (5)

– Trace: sum of the diagonal elements of the matrix; sum of the eigenvalues: TrA =
∑
j Ajj =∑

j λj .
– Determinant: has no simple qualitative definition; product of eigenvalues: detA =

∏
i λi.

o Spin Ket in Arbitrary Direction: In the (x, y, z) coordinate system with an azimuthal angle θ and an
auxiliary angle φ, the state ket for an electron with spin pointing in the n = sin θ cosφx+ sin θ sinφy+
cos θz direction is

|+,n(θ, φ)〉 = cos
θ

2
|+, z〉+ sin

θ

2
eiφ|−, z〉, (6)

which is written in the {|+, z〉, |−, z〉} basis. The phase in this expression is physically important in
determining the probability for Ŝx and Ŝy (but not Ŝz) measurements.

o Hermitian Observables: An operator Â is hermitian if it is equal to its hermitian conjugate:

Â = Â†. (7)

For matrix operators, the hermitian conjugate is the complex conjugate of the transpose. Hermitian
operators (such as the Hamiltonian and Spin operator) have real eigenvalues, and all physical observ-
ables in quantum mechanics are represented by hermitian operators.
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1 Problems
1. Charge Conjugation

If |ψq〉 is any eigenstate of the electric charge operator Q corresponding to eigenvalue q, that is to say

Q|ψq〉 = q|ψq〉, (8)

then the ”charge conjugation” operatorC applied to |ψq〉 leads to an eigenstate |ψ−q〉 ofQ correspond-
ing to eigenvalue −q:

C|ψq〉 = |ψ−q〉. (9)

(a) Find the eigenvalues of the operator CQ+QC.
(b) Can a state simultaneously be an eigenstate of C and of Q?

2. Commutators and degenerate Eigenvalue
Let us take N ×N matrices A, B, and C satisfying

[A,B] = 0, [A,C] = 0, [B,C] 6= 0. (10)

Show that at least one eigenvalue of A is degenerate. Why is [B,C] 6= 0 important in establishing this?

3. NH3 in an Electric Field
An ammonia molecule has an electric dipole moment d which points away from the plane of the hy-
drogen atoms and toward the lone nitrogen atom. The ammonia molecule can be approximated to
exist be in one of two symmetric states:

Figure 1: Feynman’s depiction of two states of NH3 molecule in an electric field.

When the molecule is placed in a non-uniform electric field E , the dipole moment leads to an energy
perturbation of the molecule. We can write the Hamiltonian (which we will learn represents the energy)
of the ammonia molecule in a non-uniform field as

H =

(
E0 + dE −A
−A E0 − dE

)
(11)

where E0 and A have units of energy, the Hamiltonian is in the {|ϕ1〉, |ϕ2〉} basis.

(a) Compute the energy eigenvalues E+ and E− of this Hamiltonian matrix. (You do not need to
compute the corresponding states |ϕ+〉 and |ϕ−〉.)

(b) Taking |dE| � |A|, compute the energy eigenvalues to lowest order in E .
(c) Let’s interpret these energy eigenvalues as potential energies. We prepare a beam of NH3 molecules

in the state |ψ〉 = 1√
2
|ϕ−〉 + 1√

2
|ϕ+〉, and pass the beam through a monotonically increasing (in

the z direction) electric field, E(z), which is perpendicular to the beam direction . (Assume the
electric dipoles of the molecule are parallel to the field). What happens to the beam in the field
region?
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2 Solution
1. (a) We can find the eigenvalues of CQ+QC by positing a guess for the eigenvector and determining

its eigenvalues. Since the charge operator kets |ψq〉 are the only states we have in this problem,
they are the natural choice. Operating on these kets with the given operator, we find

(CQ+QC) |ψq〉 = CQ|ψq〉+QC|ψq〉
= qC|ψq〉+Q|ψ−q〉
= q|ψ−q〉 − q|ψq〉 = 0. (12)

Thus, we find the degenerate eigenvalue ofCQ+QC is 0 with the eigenvector being any eigenket
|ψq〉 of Q.

We can play around with this question a bit. What if we were asked for the eigenvalues of
C2Q + QC2? In this case, since C2 = I, the eigenvalues of C2Q + QC2 are simply the eigen-
values of 2Q, namely, 2q for an eiegenket |ψ−q〉.

What if we were asked for the eigenvalues of CQ2+Q2C? Applying this operator to the ket |ψq〉,
we find (

CQ2 +Q2C
)
|ψq〉 = CQ2|ψq〉+Q2C|ψq〉

= q2C|ψq〉+Q2|ψ−q〉
= 2q2|ψ−q〉, (13)

which indicates that |ψq〉 is not an eigenket of CQ2 +Q2C. However, the two states

|φ±〉 =
1√
2
(|ψq〉 ± |ψq〉) , (14)

are eigenkets of CQ2 +Q2C and both have the eigenvalue 2q.
(b) There is a state which is simultaneously an eigenket ofQ and C if and only if we have [Q,C] = 0.

Applying the ket |ψq〉 to this commutator we find

[Q,C]|ψ−q〉 = QC|ψq〉 − CQ|ψq〉
= Q|ψ−q〉 − q|ψ−q〉
= −2q|ψ−q〉. (15)

Eq.(15) implies [Q,C] 6= 0, and no state can simultaneously be an eigenket of Q and C.
�

2. We can demonstrate this by contradiction. First we will assume that A has N distinct eigenvalues λi
and corresponding eigenvectors ~vi defined via

Â~vi = λi~vi. (16)

By the commutation relations [Â, B̂] = 0 and [Â, Ĉ] = 0, we find

Â
(
B̂~vi

)
= λi

(
B̂~vi

)
(17)

Â
(
Ĉ~vi

)
= λi

(
Ĉ~vi

)
, (18)
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which are two eigenvalue equations for eigenvectors B̂~vi and Ĉ~vi. But, if we are to assume that Â has
distinct (i.e., non-degenerate) eigenvalues then the vectors B̂~vi and Ĉ~vi cannot represent eigenvectors
different from ~vi. Therefore, both vectors must be proportional to ~vi. Defining the proportionality
constants as γi and δi for B̂~vi and Ĉ~vi, respectively, we find

B̂~vi = γi~vi (19)
Ĉ~vi = δi~vi, (20)

which are eigenvalue equations for B̂ and Ĉ in terms of their mutual set of eigenvectors {~vi}. However,
if B̂ and Ĉ share an eigenspace, then their commutator must be zero as can be seen from

[B̂, Ĉ]~vi = B̂Ĉ~vi − ĈB̂~vi
= (δiγi − γiδi)~vi = 0 (21)

Thus we cannot both have Â with non-degenerate eigenvalues and the three conditions [Â, B̂] = 0,
[Â, Ĉ] = 0, and [B̂, Ĉ] 6= 0.
To complete the demonstration, we engineer this argument in reverse: If [B̂, Ĉ] 6= 0, then B̂ and Ĉ do
not share a set of eigenvectors and thus B̂~vi and Ĉ~vi must represent distinct eigenvectors from each
other. Thus Eq.(17) and Eq.(18) represent two eigenvector-eigenvalue equations of Â defined by two
eigenvectors but only a single eigenvalue λi. Thus, at least one eigenvalue, λi, of Â is degenerate1.

�

3. (a) To compute the energy eigenvalues of the Hamiltonian, we employ the eigenvalue formula for a
2× 2 matrix:

E± =
TrH ±

√
(TrH)2 − 4detH

2

=
2E0 ±

√
4E2

0 − 4(E2
0 − d2E2 −A2)

2

= E0 ±A
√
1 +

d2E2
A2

(22)

�

(b) If we take |dE| � A, then we can expand Eq.(22) to obtain

E± = E0 ±A
√
1 +

d2E2
A2

= E0 ±A
(
1 +

d2E2

2A2

)
. (23)

�

(c) If we, were to interpret the above computed energies as potential energies, then the potential energy
for particles in the state |ϕ±〉 in a non electric field E(z) would be

U±(z) = ±
d2E2(z)

2A
(24)

1An interesting question is why does this result only apply to ”at least one eigenvalue”? In this derivation we did not select out any
particular eigenvalue for the analysis, so shouldn’t the result imply that all eigenvalues are degenerate?
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where we ignored the z independent terms which don’t affect dynamics. By the definition of
force as Fz(z) = −U ′(z), we thus find that the force on the particles in the |ϕ+〉 state is

F−z (z) = − d
2

2A

d

dz
E2(z) < 0, (25)

and the force on the particles in the |ϕ−〉 state is

F−z (z) = +
d2

2A

d

dz
E2(z) > 0, (26)

that is the particles in the |ϕ+〉 and |ϕ−〉 states feel equal and opposite forces which push them
away from the collimated beam. Thus if we have a beam ofN � 1 NH3 molecules, each of which
is prepared in the state |ψ〉 = 1√

2
|ϕ−〉 + 1√

2
|ϕ+〉, then as this beam passes through an electric

field pointing in a direction perpendicular to the beam (and increasing in that direction) then
aboutN/2 of the molecules will be deflected upwards andN/2 of the molecules will be deflected
downwards.

�
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