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Radial Schrödinger Equation and Spherical Harmonics

Week Summary
◦ Radial Schrödinger Equation and Wavefunction: For a particle of mass m in a central force potential

well V (r), the Schrödinger equation and its wave function solution can be reduced to

− ~2

2m

d2un`(r)

dr2
+

[
V (r) +

~2

2m

`(`+ 1)

r2

]
un,`(r) = En,`un,`(r) and ψn,`,m =

1

r
un,`(r)Y`,m(θ, φ), (1)

where n, `, and m are the principal, azimuthal, and magnetic quantum numbers, respectively, and
Y`,m(θ, φ) is a spherical harmonic. We note in particular that although the energy eigenvalues of the
system are, in general, written in terms of the quantum numbers n and `, for the Hydrogen atom,the
energy only depends on the n quantum number.

◦ Orbital Angular Momentum: The orbital angular momentum operator L̂ satisfies the standard prop-
erties of angular momentum operators:

L̂
2
|`,m〉 = ~2`(`+ 1)|`,m〉, L̂z|`,m〉 = ~m|`,m〉, (2)

wherem can take on the 2`+1 values−`,−`+1, . . . , `. Additionally, unlike general angular momentum
operators, the operators L̂

2
and L̂z have the coordinate representations

L̂z =
~
i

∂

∂φ
, (3)

L̂
2
= −~2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (4)

◦ Spherical Harmonics: Spherical harmonics are the mutual eigenfunctions of L̂z and L̂
2

written in the
θ, φ basis:

Y`,m(θ, φ) ≡ 〈θ, φ|`,m〉. (5)

The first few spherical harmonics are as follows:

Y0,0(θ, φ) =

(
1

4π

)1/2

, (6)

Y1,0(θ, φ) =

(
3

4π

)1/2

cos θ, Y1,±1(θ, φ) = ∓
(

3

8π

)1/2

sin θe±iφ, (7)

Y2,0(θ, φ) =

(
5

16π

)1/2

(3 cos θ2 − 1), Y2,±1(θ, φ) = ∓
(
15

8π

)1/2

sin θ cos θe±iφ, (8)

Y2,±2(θ, φ) =

(
15

32π

)1/2

sin2 θe±2iφ. (9)
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1 Problems
1. Practicing Harmonics

The wave function of a particle subjected to a spherically symmetric potential V (r) is given by

ψ(x) =
(
x2

r2
+
y2

r2
+ 3

z

r

)
g(r). (10)

(a) Is ψ(x) an eigenfunction of L2? What is the average of L2?
(b) Suppose it is somehow known that ψ(x) (which is different from the ψ(x) given above) is an

energy eigenfunction of of the Hamiltonian with eigenvalueE and additional quantum numbers
` and m. Explain how we may find V (r).

2. Constructing Hamiltonians, I
For the following physical systems

(i) Write the quantum mechanical Hamiltonian, identifying and defining all needed operators and
parameters

(ii) Calculate the frequency of a photon released in transitioning from the first excited state to the
ground state

(a) A pendulum of fixed mass and length undergoing small oscillations about its equilibrium position
(b) An electron which is confined to move linearly along a hydrocarbon chain of fixed length. The

electron does not interact with any molecules in the chain, but it is restricted to stay within the
length of the chain

(c) A rod which is constrained to rotate within a plane (Hint: Only a single angular momentum coor-
dinate direction is relevant here.)

3. Studying Diatomic molecules
An experimentalist is attempting to understand the quantum transitions a diatomic molecule can un-
dergo. He knows the diatomic molecule consists of two molecules of mass m interacting through a
roughly quadratic potential, and the two-molecule configuration can rotate like a dumbbell of length
R (where R is the intermolecular distance) in three dimensional space.
Knowing that you are studying quantum mechanics, he thinks you’re the perfect person to answer the
questions he has about this system. Specifically, he wants to know

(a) the possible frequencies of photons released if the diatomic molecule system falls from an excited
state to the next-nearest xcited state

(b) the most likely position and angular configuration of the ground state of the molecule

What are the questions you would need to answer in order to answer the experimentalist’s questions?
What is the answer to his first question?
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2 Solutions
1. (a) Writing ψ(x) in terms of angular coordinates we have

ψ(x) =
(
sin2 θ + 3 cos θ

)
g(r). (11)

The fact that Eq.(11) has no φ variable in its expression indicates that it must be expanded in
terms of spherical harmonics which are independent of φ. Considering the spherical harmonics
available to us, we find it should be expanded in terms of the functions

Y2,0(θ, φ) =

(
5

16π

)1/2

(3 cos θ2 − 1), Y1,0(θ, φ) =

(
3

4π

)1/2

cos θ, and Y0,0(θ, φ) =

(
1

4π

)1/2

.

(12)
Noting that 3 cos2 θ − 1 = 2− 3 sin2 θ, we can then solve for sin2 θ and cos θ in terms of the above
listed spherical harmonics. We then find

sin2 θ =
1

3

[
2−

(
16π

5

)1/2

Y2,0(θ, φ)

]

=
2

3
(4π)1/2Y0,0(θ, φ)−

1

3

(
16π

5

)1/2

Y2,0(θ, φ) (13)

cos θ =

(
4π

3

)1/2

Y1,0(θ, φ). (14)

Thus we see that ψ(x) can be written as

ψ(x) = g(r)

[
2

3
(4π)1/2Y0,0(θ, φ)−

1

3

(
16π

5

)1/2

Y2,0(θ, φ) + 3

(
4π

3

)1/2

Y1,0(θ, φ)

]

= g(r)
(4π)1/2

3

[
2Y0,0(θ, φ)−

2√
5
Y2,0(θ, φ) +

9√
3
Y1,0(θ, φ)

]
. (15)

And we can conclude that ψ(x) is not an eigenfunction of L2.

Now, in order to compute the average of L2 we need to compute the probability of obtaining each
possible value of ` associated with the wavefunction . First we compute the normalization of the
angular parts of the wavefunction. We only focus on the coefficients contained in the brackets of
Eq.(15) because it is only the relative magnitude of the spherical harmonics which is important.
We find the normalization (squared) of the quantity in the brackets is

(2)
2
+

(
− 2√

5

)2

+

(
9√
3

)2

= 4 +
4

5
+ 27 =

159

5
. (16)

Thus, the probabilities of obtaining the various possible values of L2 are

` = 2 : ~2`(`+ 1) = 6~2 with probability =
4

159/5
=

20

159
(17)

` = 1 : ~2`(`+ 1) = 2~2 with probability =
4/5

159/5
=

4

159
(18)

` = 0 : ~2`(`+ 1) = 0 with probability =
27

159/5
=

135

159
, (19)
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and the average of L2 is

〈L2〉 = 6~2 · 20
159

+ 2~2 · 4

159
+ 0

135

159
=

128

159
~2. (20)

�

(b) If we know ψ(x) is an eigenfunction of the Hamiltonian with energy E and additional quantum
numbers ` and m, then we should be able to write ψ(x) as

ψ(x) = un,`(r)

r
Y`,m(θ, φ), (21)

which implies

un,`(r) =
rψ(x)

Y`,m(θ, φ)
. (22)

Given thatψ(x) is an eigenfunction of the Hamiltonian, the function un,`(r)must satisfy the radial
Schrödinger equation

− ~2

2m

d2un`(r)

dr2
+

[
V (r) +

~2

2m

`(`+ 1)

r2

]
un,`(r) = Eun,`(r), (23)

Solving for the term proportional to V (r), we find

V (r)un,`(r) =

[
E +

~2

2m

d2

dr2
− ~2

2m

`(`+ 1)

2mr2

]
un,`(r). (24)

Thus, to find the potential V (r) for this system we would need to determine un,`(r) from Eq.(22),
compute the RHS of Eq.(24), and then isolate the function which ultimately multiplies un,`(r).

�

2. (a) (i) We determine the quantum mechanical Hamiltonian by first determining the classical energy.
Say we have a physical pendulum of total mass M and moment of inertia I placed in a con-
stant gravitational field of downward acceleration g. Taking θ to be the angle the pendulum
makes with the vertical, the energy of the pendulum would be

E =
1

2
Iθ̇2 +Mg`CM(1− cos θ), (25)

where `CM is the distance from the pivot point to the center of mass of the pendulum. To
write this energy in Hamiltonian form, we must express the angular derivative θ̇ in terms of
the angular momentum Lz through Lz = Iθ̇. The classical Hamiltonian then becomes

H =
L2
z

2I
+Mg`CM(1− cos θ) =

L2
z

2I
+

1

2
Mg`CMθ

2 +O(θ4), (26)

where in the final equality we took the approximated cos θ in the limit |θ| � 1. Promoting
the angular momentum and the angular coordinate to Hermitian operators, we finally have
the quantum mechanical Hamiltonian:

Ĥ =
L̂2
z

2I
+

1

2
Mg`CMθ̂

2 +O(θ̂4). (27)

�

(ii) To compute the energy of a photon released in transitioning from the first excited state to
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the ground state, we need to compute the energy eigenvalues of our system. Neglecting the
higher-order corrections, the Hamiltonian Eq.(27) is reminiscent of the harmonic oscillator
Hamiltonian

Ĥ =
P̂ 2

2M
+

1

2
Mω2X̂2. (28)

In fact, within this approximation, the two are mathematically identical, and we can find the
energy eigenvalue spectrum of Eq.(27) by computing the angular frequencyω for the physical
pendulum. We can make this more rigorous by defining a dictionary between Eq.(27) and
Eq.(28). If we make the transformations

X̂ → θ̂, P̂ → L̂z, M → I, and ω →
√
Mg`CM

I
, (29)

then Eq.(28) becomes Eq.(27). More simply, we can note that the angular frequency (squared)
in Eq.(28) is the numerator of the coordinate term divided by the denominator of the momen-
tum term: For Eq.(27), the analogous quantity is Mg`CM/I . Given the angular frequency of
the pendulum, we find the energy eigenvalues of Eq.(27) are

En ' ~ω
(
n+

1

2

)
= ~

√
Mg`CM

I

(
n+

1

2

)
. (30)

The frequency of a photon released in the 1→ 0 transition is then

f =
E1 − E0

2π~
=

1

2π

√
Mg`CM

I
. (31)

Given that pendulums are fundamentally classical systems, this problem may not seem terri-
bly physical. However, there are some atom-electromagnetic field systems whose dynamics
are well modeled by the full pendulum Hamiltonian Eq.(26).

�

(b) (i) If we have an electron of massme which is free to move within a hydrocarbon chain of length
L, then the electron essentially exists in an infinite potential well. Therefore, the Hamiltonian
for the system is

Ĥ =


P̂ 2

2me
for 0 ≤ x ≤ L

∞ otherwise
. (32)

(ii) Given that this ”electron-in-hydrocarbon” system is modeled by Eq.(32), we can infer that
the eigenvalue spectrum is

En =
~2π2

2mL2
n2, (33)

where n can be any nonzero integer. Therefore, the frequency of a photon released in making
the transition from the first excited state to a ground state1 is

f =
E2 − E1

2π~
=

3~π
4meL2

. (34)

(c) (i) A rod of mass M and length ` which is constrained to rotate within a plane has the energy

E =
1

2
Iθ̇2, (35)

1For the infinite potential well, the ground state is defined by n = 1.
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where I = 1
12M`2 is the moment of inertia about the center of mass of the rod. By analogy

with (a), we can postulate the quantum mechanical Hamiltonian of the system to be

Ĥ =
L̂2
z

2I
, (36)

where L̂z is the z angular momentum operator.
�

(ii) To determine the energy eigenvalues of Eq.(36), we can solve the Schrödinger equation. In
angular coordinates the relevant Schrödinger equation becomes

− ~2

2I

∂2

∂φ2
ψ(φ) = Eψ(φ), (37)

valid for 0 ≤ φ ≤ 2π. Eq.(37) is reminiscent of the Schrödinger equation for the infinite square
well except our wave function ψ(φ) has the periodic boundary conditions ψ(φ) = ψ(φ+ 2π).
Imposing this boundary condition on solutions to Eq.(37), we find the energy eigenvalues

Em =
~2m2

2I
, (38)

wherem is any nonzero integer. Thus, the frequency of a photon released in a transition from
the first excited state to the ground state is

f =
E2 − E1

2π~
=

3~
4πI

. (39)

�

3. In order to determine the frequency of a photon released in the state transitions and the most likely
configurations of the diatomic molecules, we would need to determine three main quantities in this
system

(1) the Hamiltonian
(2) the energy eigenvalues
(3) the wave functions

(a) Because we have a closed system of interacting particles we will ignore the center of mass dynam-
ics of the system. Consequently, we can take the system to be a vibrating and rotating diatomic
molecule fixed in space. To determine the Hamiltonian of this system we will at first consider each
type of motion separately.
For a diatomic molecule consisting of two massesm and interacting through a quadratic potential,
we can approximate the interaction energy as

V (R) =
1

2
k(R−R0)

2, (40)

where k is the spring constant of the interaction andR0 is the equilibrium distance. The vibrational
part of the Hamiltonian for this system is then

Ĥvib =
P̂ 2
R

2µ
+

1

2
k(R̂−R0)

2, (41)

where P̂R is the one-dimensional momentum of the vibrations and µ = m2/(m+m) = m/2 is the
reduced mass of the system.
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For a diatomic molecule consisting of two masses m separated by a distance R, we have a Hamil-
tonian defined by the angular momentum squared operator:

Ĥrot =
L̂
2

2I(R)
, (42)

where
I(R) ≡ m(R/2)2 +m(R/2)2 = mR2/2 (43)

is the moment of inertia of the system.
Adding Eq.(41) and Eq.(42), we find that the full Hamiltonian of the system is

Ĥ =
P̂ 2
R

2µ
+

1

2
k(R̂−R0)

2 +
L̂
2

2I(R)
. (44)

Now, although we have two seeming independent systems represented in Eq.(44), the two are ac-
tually coupled through the variable R: The vibrational system which consists of oscillations of R
also determines the moment of inertia I(R) of the rotational system. To solve for the eigenvalue
spectrum of Eq.(44), we will approximately decoupled the two systems by taking R � |R − R0|.
This is a sensible approximation presuming our masses remain near their equilibrium configura-
tion. With this approximation Eq.(44) becomes

Ĥ =
P̂ 2
R

2µ
+

1

2
k(R̂−R0)

2 +
L̂
2

2I(R0)
+O((R̂−R0)

2). (45)

The first two terms in Eq.(45) represent a harmonic oscillator Hamiltonian which is independent
of the ”rigid rotor” Hamiltonian represented by the third term. Given the standard eigenvalue
spectrum solutions to the harmonic oscillator and the rigid rotor, we have

Ĥvib|n〉 = ~

√
k

µ

(
n+

1

2

)
|n〉, and Ĥrot|`,m〉 =

~2`(`+ 1)

2I(R0)
|`,m〉, (46)

where n is the quantum number defining the energy level of the vibrational system, ` is the az-
imuthal quantum number, and m is the magnetic quantum number. Thus, the energy spectrum
of the entire diatomic molecule system is

En,` = ~
√

2k

m

(
n+

1

2

)
+

~2`(`+ 1)

mR2
0

, (47)

where we used µ = m/2 and I(R0) = mR2
0/2.

If we are interested in ”excited state→ next-nearest lower excited state” transitions, Eq.(47) implies
we are interested in the transitions n, `→ n− 1, ` or n, `→ n, `− 1. By Eq.(47), the frequencies of
photons released from these transitions are

fn,`→n−1,` =
1

2π~
(En,` − En−1,`) =

1

2π

√
2k

m
, (48)

and
fn,`→n,`−1 =

1

2π~
(En,` − En,`−1) =

~`
πmR2

0

. (49)

�
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(b) To find the most probable configurations of the ground state of the diatomic molecule, we would
need to determine the energy eigenfunctions of this system. Given that we have separable har-
monic oscillator and rotational parts, we can conclude that the wave function is

ψn,`,m(R, θ, φ) = ψn(R−R0)Y`,m(θ, φ), (50)

whereψn(x) is the energy eigenfunction of the harmonic oscillator centered at x = 0, andY`,m(θ, φ)

is a spherical harmonic, the energy eigenfunction of L̂
2
. The ground state wave function of this

system is given by

ψ0,0,0(R, θ, φ) = ψ0(R−R0)Y0,0(θ, φ)

=
(µω
π~

)1/4
e−µω(R−R0)

2/2

(
1

4π

)1/2

, (51)

which, unsurprisingly, suggests that, in the ground state, the most probable radial configuration
is the one where the diatomic molecules are separated R = R0 and all angular configurations are
equally likely. �
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