Physics 143a - Workshop 11

Hydrogenic Atoms and Two-Particle States

Week Summary

Hydrogenic Atoms, Energy Eigenfunctions, and Eigenvalues: The radial Schrödinger equation and energy eigenvalues of hydrogenic atoms are, respectively,

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 \mu} \frac{d^{2}}{d r^{2}} u_{n, \ell}+\left[-\frac{Z e^{2}}{r}+\frac{\hbar^{2}}{2 \mu} \frac{\ell(\ell+1)}{r^{2}}\right] u_{n, \ell}=E_{n} u_{n, \ell}, \quad E_{n}=-\frac{\mu}{2 \hbar^{2}}\left(Z e^{2}\right)^{2} \frac{1}{n^{2}}=Z^{2} \frac{E_{1}}{n^{2}} \tag{1}
\end{equation*}
$$

where $Z e$ is the charge of the nucleus, $\mu=m_{\text {nucleus }} m_{e} /\left(m_{e}+m_{\text {nucleus }}\right)$ is the reduced mass of the system, and $E_{1}=-13.6 \mathrm{eV}$ is the binding energy of the ground state of hydrogen. The ground state wave function of hydrogenic atoms is given by

$$
\begin{equation*}
\psi_{100}(r, \theta, \phi)=R_{10}(r) Y_{0,0}(\theta, \phi)=\left(\frac{Z^{3}}{\pi a_{0}^{3}}\right)^{1 / 2} e^{-r / a_{0}} \tag{2}
\end{equation*}
$$

where $a_{0}=\hbar^{2} / \mu e^{2}$ is the Bohr radius.

- Two-Particle States: Employing tensor product notation, a two-particle state $\left|\alpha_{1} \alpha_{2}\right\rangle$ is written more precisely as

$$
\begin{equation*}
\left|\alpha_{1} \alpha_{2}\right\rangle \equiv\left|\alpha_{1} \otimes \alpha_{2}\right\rangle \quad \text { or } \quad\left|\alpha_{1} \alpha_{2}\right\rangle \equiv\left|\alpha_{1}\right\rangle \otimes\left|\alpha_{2}\right\rangle \tag{3}
\end{equation*}
$$

where $\left|\alpha_{1}\right\rangle$ is the state of the first particle and $\left|\alpha_{2}\right\rangle$ is the state of the second particle. The tensor product in Eq. (3) denotes the fact that $\left|\alpha_{1}\right\rangle$ and $\left|\alpha_{2}\right\rangle$ "live" in two different Hilbert spaces in a similar way to how points on x and y axes "live" on different real lines.

- Triplet and Singlet States: A state consisting of two spin $\frac{1}{2}$ particles has four basis states:

$$
\begin{equation*}
|\uparrow \uparrow\rangle, \quad|\uparrow \downarrow\rangle, \quad|\downarrow \uparrow\rangle, \quad \text { and } \quad|\downarrow \downarrow\rangle, \tag{4}
\end{equation*}
$$

where in each ket, the first arrow signifies the spin- z direction of the first particle and the second arrow signifies the spin- z direction of the second particle. It is possible to write an arbitrary two spin $\frac{1}{2}$ particle state as a linear combination of the states in Eq. 4 , but we could also use a basis defined by the possible total spins of this two-particle system. Such a basis would require the spin 1 triplet and spin 0 singlet states:

$$
\text { triplet state : }\left\{\begin{array}{l}
|1,1\rangle=|\uparrow \uparrow\rangle \tag{5}\\
|1,0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle), \quad \text { singlet state: } \quad|0,0\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \\
|1,-1\rangle=|\downarrow \downarrow\rangle
\end{array}\right.
$$

where $|s, m\rangle$ stands for the state with total spin s and net spin in the z direction of m. We can interpret the triplet and single states as a different basis for the two spin $\frac{1}{2}$ particle system where total spin and net-spin in the z direction are the defining quantum numbers rather than the z direction spins of each particle.

1 Problems

1. Spin and position states

The electron in the hydrogen atom occupies the following combined spin and position state:

$$
\begin{equation*}
\sqrt{\frac{1}{3}} R_{32}(r) Y_{20}(\theta, \phi)|+, \mathbf{z}\rangle+\sqrt{\frac{2}{3}} R_{21}(r) Y_{11}(\theta, \phi)|-, \mathbf{z}\rangle \tag{6}
\end{equation*}
$$

(a) If you measured the orbital angular momentum squared $\left(L^{2}\right)$, what values might you get, and what is the probability of each?
(b) Same for the z component of orbital angular momentum $\left(L_{z}\right)$
(c) Same for the spin angular momentum squared $\left(\mathbf{S}^{2}\right)$
(d) What is the average energy of this system? (Write the result in terms of E_{1})

2. Practice with Tensor Product Notation

Operators acting on a two-particle state act separately on each space of particles. Therefore, the total spin- z operator \hat{S}_{z} acting on an arbitrary two-particle state can be written as

$$
\begin{equation*}
\hat{S}_{z} \equiv \hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z} \tag{7}
\end{equation*}
$$

which implies that the operator \hat{S}_{z} is equivalent to adding the operator which acts on the first particle with $\hat{S}_{1 z}$ and leaves the second particle state unchanged (i.e., multiplies it by the identity matrix) to the operator which leaves the first particle unchanged and acts on the second particle with $\hat{S}_{2 z}$. For example, acting on the state $|\uparrow \uparrow\rangle$ with \hat{S}_{z}, we find

$$
\begin{align*}
\hat{S}_{z}|\uparrow \uparrow\rangle & \equiv\left(\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}\right)|\uparrow\rangle \otimes|\uparrow\rangle \\
& =\hat{S}_{1 z}|\uparrow\rangle \otimes|\uparrow\rangle+|\uparrow\rangle \otimes \hat{S}_{2 z}|\uparrow\rangle \\
& =\frac{\hbar}{2}|\uparrow\rangle \otimes|\uparrow\rangle+\frac{\hbar}{2}|\uparrow\rangle \otimes|\uparrow\rangle \\
& =\hbar|\uparrow\rangle \otimes|\uparrow\rangle \equiv \hbar|\uparrow \uparrow\rangle . \tag{8}
\end{align*}
$$

(a) Using Eq. (8) as a model, derive how \hat{S}_{z} (total spin-z operator) acts on all of the triplet and singlet states.
(b) Determine how the operators $\hat{S}_{1 x} \otimes \hat{S}_{2 x}, \hat{S}_{1 y} \otimes \hat{S}_{2 y}$, and $\hat{S}_{1 z} \otimes \hat{S}_{2 z}$ act on all the particle states in Eq. (4). (Hint: You should get 12 answers. It might help if your final answer is a table)
(c) For the two particle state, we define the total-spin squared operator as

$$
\begin{align*}
\hat{\mathbf{S}}^{2} & \equiv\left(\hat{\mathbf{S}}_{1} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}\right)^{2} \\
& =\hat{\mathbf{S}}_{1}^{2} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}^{2}+2\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}+\hat{S}_{1 y} \otimes \hat{S}_{2 y}+\hat{S}_{1 z} \otimes \hat{S}_{2 z}\right) . \tag{9}
\end{align*}
$$

Given that $\mathbf{S}_{1}^{2}=\hbar^{2} \frac{1}{2}\left(\frac{1}{2}+1\right) \mathbb{I}_{1}=\frac{3 \hbar^{2}}{4} \mathbb{I}_{1}$ and $\mathbf{S}_{2}^{2}=\frac{3 \hbar^{2}}{4} \mathbb{I}_{2}$, compute

$$
\begin{equation*}
\hat{\mathbf{S}}^{2}|1,1\rangle, \quad \text { and } \quad \hat{\mathbf{S}}^{2}|1,-1\rangle \tag{10}
\end{equation*}
$$

(d) Optional: Compute $\hat{\mathbf{S}}^{2}|1,0\rangle$ and $\hat{\mathbf{S}}^{2}|0,0\rangle$.

2 Solution

1. (a) For the wave function

$$
\begin{equation*}
\psi(r, \theta, \phi)=\sqrt{\frac{1}{3}} R_{32}(r) Y_{20}(\theta, \phi)|+, \mathbf{z}\rangle+\sqrt{\frac{2}{3}} R_{21}(r) Y_{11}(\theta, \phi)|-, \mathbf{z}\rangle \tag{11}
\end{equation*}
$$

the possible values of ℓ are 2 and 1 . In ket notation, the state can be represented as

$$
\begin{equation*}
|\psi\rangle=\sqrt{\frac{1}{3}}|3,2,0\rangle|+, \mathbf{z}\rangle+\sqrt{\frac{2}{3}}|2,1,1\rangle|-, \mathbf{z}\rangle . \tag{12}
\end{equation*}
$$

Thus given the coefficients of the states and the eigenvalue equation $\hat{\mathbf{L}}^{2}|\ell, m\rangle=\hbar^{2} \ell(\ell+1)|\ell, m\rangle$ we find

$$
\begin{align*}
& \operatorname{Prob}\left(\mathbf{L}^{2}=2 \hbar^{2}\right)=\frac{2}{3} \tag{13}\\
& \operatorname{Prob}\left(\mathbf{L}^{2}=6 \hbar^{2}\right)=\frac{1}{3} \tag{14}
\end{align*}
$$

(b) Similarly to part (a) we find

$$
\begin{align*}
& \operatorname{Prob}\left(L_{z}=\hbar\right)=\frac{2}{3} \tag{15}\\
& \operatorname{Prob}\left(L_{z}=0\right)=\frac{1}{3} \tag{16}
\end{align*}
$$

(c) Since we are dealing with a spin $\frac{1}{2}$ particle, the only unique eigenvalue of the $\hat{\mathbf{S}}^{2}$ operator is $\hbar^{2} \frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{3 \hbar^{2}}{4}$. Thus we have

$$
\begin{equation*}
\operatorname{Prob}\left(\mathbf{S}^{2}=3 \hbar^{2} / 4\right)=1 \tag{17}
\end{equation*}
$$

(d) The values of n in Eq. 12) are $n=3$ and $n=2$. Given that the energy eigenvalues of the electron in the hydrogen atom are $E_{n}=E_{1} / n^{2}$, we find the average energy of the state Eq. 12 is

$$
\begin{equation*}
\langle E\rangle=\frac{1}{3} \times \frac{E_{1}}{9}+\frac{2}{3} \times \frac{E_{1}}{4}=\frac{11 E_{1}}{54} \tag{18}
\end{equation*}
$$

2. (a) To compute how the spin operator $\hat{S}_{z}=\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}$ acts on the states in Eq. (5), we express the triplet and singlet states in terms of their two-particle spin states. We thus find

$$
\begin{aligned}
\hat{S}_{z}|1,1\rangle & =\left(\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}\right)|\uparrow\rangle \otimes|\uparrow\rangle \\
& =\hat{S}_{1 z}|\uparrow\rangle \otimes|\uparrow\rangle+|\uparrow\rangle \otimes \hat{S}_{2 z}|\uparrow\rangle \\
& =\frac{\hbar}{2}|\uparrow\rangle \otimes|\uparrow\rangle+\frac{\hbar}{2}|\uparrow\rangle \otimes|\uparrow\rangle \\
& =\hbar|\uparrow\rangle \otimes|\uparrow\rangle=\hbar|1,1\rangle
\end{aligned}
$$

$$
\begin{align*}
\hat{S}_{z}|1,0\rangle & =\left(\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}\right)\left(\frac{1}{\sqrt{2}}|\uparrow\rangle \otimes|\downarrow\rangle-\frac{1}{\sqrt{2}}|\downarrow\rangle \otimes|\uparrow\rangle\right) \\
& =\frac{\hbar}{2 \sqrt{2}}(|\uparrow\rangle \otimes|\downarrow\rangle-|\downarrow\rangle \otimes|\uparrow\rangle-|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle)=0 \\
\hat{S}_{z}|1,-1\rangle & =\left(\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}\right)|\downarrow\rangle \otimes|\downarrow\rangle \\
& =\hat{S}_{1 z}|\downarrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes \hat{S}_{2 z}|\downarrow\rangle \\
& =\frac{\hbar}{2}|\downarrow\rangle \otimes|\downarrow\rangle+\frac{\hbar}{2}|\downarrow\rangle \otimes|\downarrow\rangle \\
& =\hbar|\downarrow\rangle \otimes|\downarrow\rangle=\hbar|1,-1\rangle \\
\hat{S}_{z}|0,0\rangle & =\left(\hat{S}_{1 z} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{S}_{2 z}\right)\left(\frac{1}{\sqrt{2}}|\uparrow\rangle \otimes|\downarrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle \otimes|\uparrow\rangle\right) \\
& =\frac{\hbar}{2 \sqrt{2}}(|\uparrow\rangle \otimes|\downarrow\rangle+|\downarrow\rangle \otimes|\uparrow\rangle-|\uparrow\rangle \otimes|\downarrow\rangle-|\downarrow\rangle \otimes|\uparrow\rangle)=0 . \tag{19}
\end{align*}
$$

Given the interpretation of the triplet and singlet states as $|s, m\rangle$ states where s is the total spin quantum number and m is the quantum number for net spin in the z direction, these results are consistent with our expectations and the formula

$$
\begin{equation*}
\hat{S}_{z}|s, m\rangle=\hbar m|s, m\rangle \tag{20}
\end{equation*}
$$

(b) As an example, we compute how $\hat{S}_{1 x} \otimes \hat{S}_{2 x}$ acts on $|\uparrow \uparrow\rangle$. We find

$$
\begin{align*}
\hat{S}_{1 x} \hat{S}_{2 x}|\uparrow \uparrow\rangle & =\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}\right)|\uparrow\rangle \otimes|\uparrow\rangle \\
& =\hat{S}_{1 x}|\uparrow\rangle \otimes \hat{S}_{2 x}|\uparrow\rangle \\
& =\frac{\hbar}{2}|\downarrow\rangle \otimes \frac{\hbar}{2}|\downarrow\rangle=\frac{\hbar^{2}}{4}|\downarrow \downarrow\rangle \tag{21}
\end{align*}
$$

Repeating this calculation for all combinations of $\hat{S}_{1 x} \otimes \hat{S}_{2 x}, \hat{S}_{1 y} \otimes \hat{S}_{2 y}$, and $\hat{S}_{1 z} \otimes \hat{S}_{2 z}$ and the states in Eq. (4), we obtain the following table:

	$\hat{S}_{12} \hat{S}_{2 x}$	$\hat{S}_{1 y} \hat{S}_{2 y}$	$\hat{S}_{1 z} \hat{S}_{2 z}$
$\|\uparrow \uparrow\rangle$	$\frac{\hbar^{2}}{4}\|\downarrow \downarrow\rangle$	$-\frac{\hbar^{2}}{4}\|\downarrow \downarrow\rangle$	$\frac{\hbar^{2}}{4}\|\uparrow \uparrow\rangle$
$\|\uparrow \downarrow\rangle$	$\frac{\hbar^{2}}{4}\|\downarrow \uparrow\rangle$	$\frac{\hbar^{2}}{4}\|\downarrow \uparrow\rangle$	$-\frac{\hbar^{2}}{4}\|\uparrow \downarrow\rangle$
$\|\downarrow \uparrow\rangle$	$\frac{\hbar^{2}}{4}\|\uparrow \downarrow\rangle$	$\frac{\hbar^{2}}{4}\|\uparrow \downarrow\rangle$	$-\frac{\hbar^{2}}{4}\|\downarrow \uparrow\rangle$
$\|\downarrow \downarrow\rangle$	$\frac{\hbar^{2}}{4}\|\uparrow \uparrow\rangle$	$-\frac{\hbar^{2}}{4}\|\uparrow \uparrow\rangle$	$\frac{\hbar^{2}}{4}\|\downarrow \downarrow\rangle$

Table 1
(c) Applying $\hat{\mathbf{S}}^{2}$ to the state $|1,1\rangle$, and using the result from (b), we find

$$
\hat{\mathbf{S}}^{2}|1,1\rangle=\left[\hat{\mathbf{S}}_{1}^{2} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}^{2}+2\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}+\hat{S}_{1 y} \otimes \hat{S}_{2 y}+\hat{S}_{1 z} \otimes \hat{S}_{2 z}\right)\right]|\uparrow\rangle \otimes|\uparrow\rangle
$$

$$
\begin{align*}
& =\frac{3 \hbar^{2}}{2}|\uparrow \uparrow\rangle+\frac{\hbar^{2}}{2}(|\downarrow \downarrow\rangle-|\downarrow \downarrow\rangle+|\uparrow \uparrow\rangle) \\
& =\frac{3 \hbar^{2}}{2}|\uparrow \uparrow\rangle+\frac{\hbar^{2}}{2}|\uparrow \uparrow\rangle=2 \hbar^{2}|1,1\rangle \tag{22}
\end{align*}
$$

And, similarly, applying $\hat{\mathbf{S}}^{2}$ to the state $|1,-1\rangle$ gives us

$$
\begin{align*}
\hat{\mathbf{S}}^{2}|1,-1\rangle & =\left[\hat{\mathbf{S}}_{1}^{2} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}^{2}+2\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}+\hat{S}_{1 y} \otimes \hat{S}_{2 y}+\hat{S}_{1 z} \otimes \hat{S}_{2 z}\right)\right]|\downarrow\rangle \otimes|\downarrow\rangle \\
& =\frac{3 \hbar^{2}}{2}|\downarrow \downarrow\rangle+\frac{\hbar^{2}}{2}(|\uparrow \uparrow\rangle-|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle) \\
& =\frac{3 \hbar^{2}}{2}|\downarrow \downarrow\rangle+\frac{\hbar^{2}}{2}|\downarrow \downarrow\rangle=2 \hbar^{2}|1,-1\rangle . \tag{23}
\end{align*}
$$

(d) Applying $\hat{\mathbf{S}}^{2}$ to the state $|1,0\rangle$, we have

$$
\begin{align*}
\hat{\mathbf{S}}^{2}|1,0\rangle= & {\left[\hat{\mathbf{S}}_{1}^{2} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}^{2}+2\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}+\hat{S}_{1 y} \otimes \hat{S}_{2 y}+\hat{S}_{1 z} \otimes \hat{S}_{2 z}\right)\right] } \\
& \left(\frac{1}{\sqrt{2}}|\uparrow\rangle \otimes|\downarrow\rangle+\frac{1}{\sqrt{2}}|\downarrow\rangle \otimes|\uparrow\rangle\right) \\
= & \frac{3 \hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle+\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle\right)+\frac{\hbar^{2}}{2 \sqrt{2}}(|\downarrow \uparrow\rangle+|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle+|\uparrow \downarrow\rangle+|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle) \\
= & \frac{3 \hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle+\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle\right)+\frac{\hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle+\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle\right)=2 \hbar^{2}|1,0\rangle . \tag{24}
\end{align*}
$$

And, similarly, applying $\hat{\mathbf{S}}^{2}$ to the state $|0,0\rangle$ gives us

$$
\begin{align*}
\hat{\mathbf{S}}^{2}|0,0\rangle= & {\left[\hat{\mathbf{S}}_{1}^{2} \otimes \mathbb{I}_{2}+\mathbb{I}_{1} \otimes \hat{\mathbf{S}}_{2}^{2}+2\left(\hat{S}_{1 x} \otimes \hat{S}_{2 x}+\hat{S}_{1 y} \otimes \hat{S}_{2 y}+\hat{S}_{1 z} \otimes \hat{S}_{2 z}\right)\right] } \\
& \left(\frac{1}{\sqrt{2}}|\uparrow\rangle \otimes|\downarrow\rangle-\frac{1}{\sqrt{2}}|\downarrow\rangle \otimes|\uparrow\rangle\right) \\
= & \frac{3 \hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle-\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle\right)+\frac{\hbar^{2}}{2 \sqrt{2}}(|\downarrow \uparrow\rangle+|\downarrow \uparrow\rangle-|\uparrow \downarrow\rangle-|\uparrow \downarrow\rangle-|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\
= & \frac{3 \hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle-\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle\right)+\frac{3 \hbar^{2}}{2}\left(\frac{1}{\sqrt{2}}|\downarrow \uparrow\rangle-\frac{1}{\sqrt{2}}|\uparrow \downarrow\rangle\right)=0 . \tag{25}
\end{align*}
$$

The results of (c) and (d) are consistent with the interpretation of the state $|s, m\rangle$ as representing a particle of spin $s=1$ or $s=0$. In particular all of the results are special cases of the eigenvalueeigenket relation

$$
\begin{equation*}
\hat{\mathbf{S}}^{2}|s, m\rangle=\hbar^{2} s(s+1)|s, m\rangle \tag{26}
\end{equation*}
$$

References

