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Hydrogenic Atoms and Two-Particle States

Week Summary
◦ Hydrogenic Atoms, Energy Eigenfunctions, and Eigenvalues: The radial Schrödinger equation and

energy eigenvalues of hydrogenic atoms are, respectively,

− ~2

2µ

d2

dr2
un,` +

[
−Ze

2

r
+

~2

2µ

`(`+ 1)

r2

]
un,` = Enun,`, En = − µ

2~2
(Ze2)2

1

n2
= Z2E1

n2
(1)

where Ze is the charge of the nucleus, µ = mnucleusme/(me + mnucleus) is the reduced mass of the
system, and E1 = −13.6 eV is the binding energy of the ground state of hydrogen. The ground state
wave function of hydrogenic atoms is given by

ψ100(r, θ, φ) = R10(r)Y0,0(θ, φ) =

(
Z3

πa30

)1/2

e−r/a0 , (2)

where a0 = ~2/µe2 is the Bohr radius.

◦ Two-Particle States: Employing tensor product notation, a two-particle state |α1α2〉 is written more
precisely as

|α1α2〉 ≡ |α1 ⊗ α2〉 or |α1α2〉 ≡ |α1〉 ⊗ |α2〉, (3)

where |α1〉 is the state of the first particle and |α2〉 is the state of the second particle. The tensor product
in Eq.(3) denotes the fact that |α1〉 and |α2〉 ”live” in two different Hilbert spaces in a similar way to
how points on x and y axes ”live” on different real lines.

◦ Triplet and Singlet States: A state consisting of two spin 1
2 particles has four basis states:

| ↑↑〉, | ↑↓〉, | ↓↑〉, and | ↓↓〉, (4)

where in each ket, the first arrow signifies the spin-z direction of the first particle and the second
arrow signifies the spin-z direction of the second particle. It is possible to write an arbitrary two spin
1
2 particle state as a linear combination of the states in Eq.(4), but we could also use a basis defined by
the possible total spins of this two-particle system. Such a basis would require the spin 1 triplet and
spin 0 singlet states:

triplet state :


|1, 1〉 = | ↑↑〉

|1, 0〉 = 1√
2
(| ↑↓〉+ | ↓↑〉)

|1,−1〉 = | ↓↓〉

, singlet state: |0, 0〉 = 1√
2
(| ↑↓〉 − | ↓↑〉) (5)

where |s,m〉 stands for the state with total spin s and net spin in the z direction ofm. We can interpret
the triplet and single states as a different basis for the two spin 1

2 particle system where total spin and
net-spin in the z direction are the defining quantum numbers rather than the z direction spins of each
particle.
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1 Problems
1. Spin and position states

The electron in the hydrogen atom occupies the following combined spin and position state:√
1

3
R32(r)Y20(θ, φ)|+, z〉+

√
2

3
R21(r)Y11(θ, φ)|−, z〉 (6)

(a) If you measured the orbital angular momentum squared (L2), what values might you get, and
what is the probability of each?

(b) Same for the z component of orbital angular momentum (Lz)
(c) Same for the spin angular momentum squared (S2)
(d) What is the average energy of this system? (Write the result in terms of E1)

2. Practice with Tensor Product Notation
Operators acting on a two-particle state act separately on each space of particles. Therefore, the total
spin-z operator Ŝz acting on an arbitrary two-particle state can be written as

Ŝz ≡ Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z, (7)

which implies that the operator Ŝz is equivalent to adding the operator which acts on the first particle
with Ŝ1z and leaves the second particle state unchanged (i.e., multiplies it by the identity matrix) to
the operator which leaves the first particle unchanged and acts on the second particle with Ŝ2z . For
example, acting on the state | ↑↑〉with Ŝz , we find

Ŝz| ↑↑〉 ≡
(
Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z

)
| ↑〉 ⊗ | ↑〉

= Ŝ1z| ↑〉 ⊗ | ↑〉+ | ↑〉 ⊗ Ŝ2z| ↑〉
= ~

2 | ↑〉 ⊗ | ↑〉+
~
2 | ↑〉 ⊗ | ↑〉

= ~| ↑〉 ⊗ | ↑〉 ≡ ~| ↑↑〉. (8)

(a) Using Eq.(8) as a model, derive how Ŝz (total spin-z operator) acts on all of the triplet and singlet
states.

(b) Determine how the operators Ŝ1x ⊗ Ŝ2x, Ŝ1y ⊗ Ŝ2y , and Ŝ1z ⊗ Ŝ2z act on all the particle states in
Eq.(4). (Hint: You should get 12 answers. It might help if your final answer is a table)

(c) For the two particle state, we define the total-spin squared operator as

Ŝ
2
≡
(

Ŝ1 ⊗ I2 + I1 ⊗ Ŝ2

)2
= Ŝ

2

1 ⊗ I2 + I1 ⊗ Ŝ
2

2 + 2
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)
. (9)

Given that S2
1 = ~2 1

2 (
1
2 + 1)I1 = 3~2

4 I1 and S2
2 = 3~2

4 I2, compute

Ŝ
2
|1, 1〉, and Ŝ

2
|1,−1〉. (10)

(d) Optional: Compute Ŝ
2
|1, 0〉 and Ŝ

2
|0, 0〉.
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2 Solution
1. (a) For the wave function

ψ(r, θ, φ) =

√
1

3
R32(r)Y20(θ, φ)|+, z〉+

√
2

3
R21(r)Y11(θ, φ)|−, z〉, (11)

the possible values of ` are 2 and 1. In ket notation, the state can be represented as

|ψ〉 =
√

1

3
|3, 2, 0〉|+, z〉+

√
2

3
|2, 1, 1〉|−, z〉. (12)

Thus given the coefficients of the states and the eigenvalue equation L̂
2
|`,m〉 = ~2`(` + 1)|`,m〉

we find

Prob (L2 = 2~2) =
2

3
, (13)

Prob (L2 = 6~2) =
1

3
. (14)

�

(b) Similarly to part (a) we find

Prob (Lz = ~) =
2

3
, (15)

Prob (Lz = 0) =
1

3
. (16)

�

(c) Since we are dealing with a spin 1
2 particle, the only unique eigenvalue of the Ŝ

2
operator is

~2 1
2 (1 +

1
2 ) =

3~2

4 . Thus we have

Prob (S2 = 3~2/4) = 1. (17)

�

(d) The values of n in Eq.(12) are n = 3 and n = 2. Given that the energy eigenvalues of the electron
in the hydrogen atom are En = E1/n

2, we find the average energy of the state Eq.(12) is

〈E〉 = 1

3
× E1

9
+

2

3
× E1

4
=

11E1

54
. (18)

�

2. (a) To compute how the spin operator Ŝz = Ŝ1z⊗ I2+ I1⊗ Ŝ2z acts on the states in Eq.(5), we express
the triplet and singlet states in terms of their two-particle spin states. We thus find

Ŝz|1, 1〉 =
(
Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z

)
| ↑〉 ⊗ | ↑〉

= Ŝ1z| ↑〉 ⊗ | ↑〉+ | ↑〉 ⊗ Ŝ2z| ↑〉

= ~
2 | ↑〉 ⊗ | ↑〉+

~
2 | ↑〉 ⊗ | ↑〉

= ~| ↑〉 ⊗ | ↑〉 = ~|1, 1〉
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Ŝz|1, 0〉 =
(
Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z

)( 1√
2
| ↑〉 ⊗ | ↓〉 − 1√

2
| ↓〉 ⊗ | ↑〉

)
=

~
2
√
2

(
| ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉 − | ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉

)
= 0

Ŝz|1,−1〉 =
(
Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z

)
| ↓〉 ⊗ | ↓〉

= Ŝ1z| ↓〉 ⊗ | ↓〉+ | ↓〉 ⊗ Ŝ2z| ↓〉

= ~
2 | ↓〉 ⊗ | ↓〉+

~
2 | ↓〉 ⊗ | ↓〉

= ~| ↓〉 ⊗ | ↓〉 = ~|1,−1〉

Ŝz|0, 0〉 =
(
Ŝ1z ⊗ I2 + I1 ⊗ Ŝ2z

)( 1√
2
| ↑〉 ⊗ | ↓〉+ 1√

2
| ↓〉 ⊗ | ↑〉

)
=

~
2
√
2

(
| ↑〉 ⊗ | ↓〉+ | ↓〉 ⊗ | ↑〉 − | ↑〉 ⊗ | ↓〉 − | ↓〉 ⊗ | ↑〉

)
= 0. (19)

Given the interpretation of the triplet and singlet states as |s,m〉 states where s is the total spin
quantum number and m is the quantum number for net spin in the z direction, these results are
consistent with our expectations and the formula

Ŝz|s,m〉 = ~m|s,m〉. (20)

�

(b) As an example, we compute how Ŝ1x ⊗ Ŝ2x acts on | ↑↑〉. We find

Ŝ1xŜ2x| ↑↑〉 =
(
Ŝ1x ⊗ Ŝ2x

)
| ↑〉 ⊗ | ↑〉

= Ŝ1x| ↑〉 ⊗ Ŝ2x| ↑〉

=
~
2
| ↓〉 ⊗ ~

2
| ↓〉 = ~2

4
| ↓↓〉, (21)

Repeating this calculation for all combinations of Ŝ1x ⊗ Ŝ2x, Ŝ1y ⊗ Ŝ2y , and Ŝ1z ⊗ Ŝ2z and the
states in Eq.(4), we obtain the following table:

Ŝ1xŜ2x Ŝ1yŜ2y Ŝ1zŜ2z

| ↑↑〉 ~2

4 | ↓↓〉 −~2

4 | ↓↓〉
~2

4 | ↑↑〉

| ↑↓〉 ~2

4 | ↓↑〉
~2

4 | ↓↑〉 −~2

4 | ↑↓〉

| ↓↑〉 ~2

4 | ↑↓〉
~2

4 | ↑↓〉 −~2

4 | ↓↑〉

| ↓↓〉 ~2

4 | ↑↑〉 −~2

4 | ↑↑〉
~2

4 | ↓↓〉

Table 1

�

(c) Applying Ŝ
2

to the state |1, 1〉, and using the result from (b), we find

Ŝ
2
|1, 1〉 =

[
Ŝ
2

1 ⊗ I2 + I1 ⊗ Ŝ
2

2 + 2
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)]
| ↑〉 ⊗ | ↑〉
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=
3~2

2
| ↑↑〉+ ~2

2
(| ↓↓〉 − | ↓↓〉+ | ↑↑〉)

=
3~2

2
| ↑↑〉+ ~2

2
| ↑↑〉 = 2~2|1, 1〉. (22)

And, similarly, applying Ŝ
2

to the state |1,−1〉 gives us

Ŝ
2
|1,−1〉 =

[
Ŝ
2

1 ⊗ I2 + I1 ⊗ Ŝ
2

2 + 2
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)]
| ↓〉 ⊗ | ↓〉

=
3~2

2
| ↓↓〉+ ~2

2
(| ↑↑〉 − | ↑↑〉+ | ↓↓〉)

=
3~2

2
| ↓↓〉+ ~2

2
| ↓↓〉 = 2~2|1,−1〉. (23)

�

(d) Applying Ŝ
2

to the state |1, 0〉, we have

Ŝ
2
|1, 0〉 =

[
Ŝ
2

1 ⊗ I2 + I1 ⊗ Ŝ
2

2 + 2
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)]
(

1√
2
| ↑〉 ⊗ | ↓〉+ 1√

2
| ↓〉 ⊗ | ↑〉

)
=

3~2

2

(
1√
2
| ↑↓〉+ 1√

2
| ↓↑〉

)
+

~2

2
√
2

(
| ↓↑〉+ | ↓↑〉 − | ↑↓〉+ | ↑↓〉+ | ↑↓〉 − | ↓↑〉

)
=

3~2

2

(
1√
2
| ↑↓〉+ 1√

2
| ↓↑〉

)
+

~2

2

(
1√
2
| ↓↑〉+ 1√

2
| ↑↓〉

)
= 2~2|1, 0〉. (24)

And, similarly, applying Ŝ
2

to the state |0, 0〉 gives us

Ŝ
2
|0, 0〉 =

[
Ŝ
2

1 ⊗ I2 + I1 ⊗ Ŝ
2

2 + 2
(
Ŝ1x ⊗ Ŝ2x + Ŝ1y ⊗ Ŝ2y + Ŝ1z ⊗ Ŝ2z

)]
(

1√
2
| ↑〉 ⊗ | ↓〉 − 1√

2
| ↓〉 ⊗ | ↑〉

)
=

3~2

2

(
1√
2
| ↑↓〉 − 1√

2
| ↓↑〉

)
+

~2

2
√
2

(
| ↓↑〉+ | ↓↑〉 − | ↑↓〉 − | ↑↓〉 − | ↑↓〉+ | ↓↑〉

)
=

3~2

2

(
1√
2
| ↑↓〉 − 1√

2
| ↓↑〉

)
+

3~2

2

(
1√
2
| ↓↑〉 − 1√

2
| ↑↓〉

)
= 0. (25)

The results of (c) and (d) are consistent with the interpretation of the state |s,m〉 as representing
a particle of spin s = 1 or s = 0. In particular all of the results are special cases of the eigenvalue-
eigenket relation

Ŝ
2
|s,m〉 = ~2s(s+ 1)|s,m〉. (26)

�
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