
Mobolaji Williams Physics 143a Section Notes: May 1, 2017

Physics 143a – Workshop 12
Final Exam Review Problems

Problems
Note: All of these problems assume access to the final exam equation sheet.

1. Time Evolution (Adapted from [1])
Suppose that the Hamiltonian is a linear operator with

Ĥ|ψ〉 = λ|φ〉, Ĥ|φ〉 = λ|ψ〉, (1)

where λ is an arbitrary real constant, and |ψ〉 and |φ〉 are a pair of normalized independent (but not
necessarily orthogonal) state vectors.

(a) What are the conditions that |φ〉 and |ψ〉must satisfy in order for this Hamiltonian to be Hermi-
tian?

(b) With these conditions satisfied, find the states with definite energy and the corresponding energy
values.

(c) Say the system begins in the state |ψ〉. At what times is there zero probability to be found in the
state |φ〉?

2. Harmonic oscillator (Adapted from [2])
Consider a one-dimensional harmonic oscillator of Hamiltonian Ĥ and stationary states |n〉:

Ĥ|n〉 = ~ω
(
â†â+

1

2

)
|n〉 = ~ω

(
n+

1

2

)
|n〉, (2)

where â and â† are the raising and lowering operators of the harmonic oscillator satisfying [â, â†] = 1.
The operator Û(k) is defined by

Û(k) = eikX̂ , (3)

where k is real and X̂ is the position operator.

(a) Is Û(k) unitary? Show that for all n, its matrix elements satisfy the relation∑
n′

∣∣∣〈n|Û(k)|n′〉
∣∣∣2 = 1. (4)

(b) Using the formula
eÂeB̂ = eÂ+B̂e

1
2 [Â,B̂], (5)

valid for [Â, B̂] commuting with Â and B̂, write Û(k) as a product of exponential operators.
(c) In terms of Ek = ~2k2/2m and Eω = ~ω, find an expression for the matrix element

〈n|Û(k)|0〉. (6)

(Note: â†|n〉 =
√
n+ 1|n+ 1〉 and â†|n〉 =

√
n|n− 1〉)

What happens as k approaches zero?
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3. Hydrogen Wave Function
You are told that the angular part of the electron’s wave function in the hydrogen atom is

f(θ, φ) ∝ 1

3
+ (1 + cosφ tan 2θ) cos 2θ, (7)

where the proportionality constant is defined by normalization.

(a) You measure the energy. What is the probability of finding the value −13.6 eV? What is the
probability of finding the value −3.40 eV?

(b) You measure L2. What values can you obtain and with what probabilities?
(c) You measure Lz . What is the probability of obtaining the lowest Lz value?

4. Spin vectors and density matrices (Adapted from [3])

(a) Consider a pure state of identically prepared spin 1
2 systems. Suppose the expectation values 〈Sx〉

and 〈Sz〉 and the sign of 〈Sy〉 are known. How would we determine the state vector? Why is it
unnecessary to know the magnitude of 〈Sy〉?

(b) Consider a mixed state of spin 1
2 systems. Suppose the mixed state averages [Sx], [Sy], and [Sz] are

all known. In terms of [Sx], [Sy], and [Sz], write the inequality which defines this state as a mixed
state.
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Solutions
1. (a) In order for an operator to be Hermitian, it must be equal to its Hermitian conjugate. This in turn

implies the operator has real eigenvalues and consequently real expectation values. Thus in order
for Ĥ to be Hermitian, its expectation value must be real. With this condition, we have

〈ψ|Ĥ|ψ〉 = λ〈ψ|φ〉 = (λ〈ψ|φ〉)∗ = λ〈φ|ψ〉, (8)

where we used the fact that λ is real in the final equality. Computing 〈φ|Ĥ|φ〉 produces a similar
result, and so we see that in order for Ĥ to be hermitian, we need

〈φ|ψ〉 = 〈ψ|φ〉. (9)

�

(b) Given Eq.(1), we find that Ĥ in the |ψ〉, |φ〉 basis is

Ĥ =

(
λ〈ψ|φ〉 λ
λ λ〈φ|ψ〉

)
[in |ψ〉, |φ〉 basis]. (10)

Computing the eigenvalues of this Hamiltonian, gives us

E± =
Tr Ĥ ±

√
(Tr Ĥ)2 − 4 det Ĥ

2
= λ〈φ|ψ〉 ± |λ| (11)

where we used 〈φ|ψ〉 = 〈ψ|φ〉. For simplicity, and without loss of generality, we will take λ > 0;
The alternative choice λ < 0 can be analyzed similarly. For λ > 0, the eigenvalues become

E± = λ〈φ|ψ〉 ± λ. (12)

By inspection of Eq.(10) (or by solving the eigenvector equations), we find that the eigenvectors
for Eq.(12) are

|E+〉 =
1√
2

(
1
1

)
, |E−〉 =

1√
2

(
1
−1

)
, (13)

or, written explicitly in the |ψ〉, |φ〉 basis, is

|E+〉 =
1√
2
|ψ〉+ 1√

2
|φ〉, |E−〉 =

1√
2
|ψ〉 − 1√

2
|φ〉. (14)

�

(c) Since 〈φ|ψ〉 6= 0, if the state begins in |ψ〉, there are no subsequent times at which there is zero
probability to be in the state |φ〉. We can see this by computing our time evolved state given the
initial condition |α(t = 0)〉 = |ψ〉. Applying the standard time-evolution operator, we find

|α(t)〉 = e−iĤt/~|ψ〉

= e−iĤt/~
(

1√
2
|E+〉+

1√
2
|E−〉

)
=

1√
2
e−iE+t/~|E+〉+

1√
2
e−iE−t/~|E−〉. (15)

Computing the inner product between |α(t)〉 and |φ〉 yields the probability amplitude for the
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|ψ〉 → |φ〉 process:

〈φ|α(t)〉 = 1√
2
e−iE+t/~〈φ|E+〉+

1√
2
e−iE−t/~〈φ|E−〉

=
1

2

[
(1 + 〈φ|ψ〉)e−iE+t/~ − (1− 〈φ|ψ〉)e−iE−t/~

]
. (16)

We want to find the times where |〈φ|α(t)〉|2 = 0. These times are equivalent to those for which
〈φ|α(t)〉 = 0. Solving for these times using Eq.(16), we find

1 + 〈φ|ψ〉
1− 〈φ|ψ〉

= e−i(E−−E+)t/~ = e−2iλt/~. (17)

Eq.(17) has no solution because while the right-hand side has modulus 1 for all t, the left hand side
(given 〈φ|ψ〉 6= 0) has a modulus which can never be 1. Therefore, we see that precisely because
|φ〉 and |ψ〉 are not orthogonal, if we begin in |ψ〉 there will always be a nonzero probability to be
found in |φ〉.

�

2. (a) If k is real and X̂ is Hermitian we find

Û(k)† = exp
(
ikX̂

)†
= exp

(
−ikX̂†

)
= exp

(
−ikX̂

)
(18)

Therefore Û Û† = eikX̂e−ikX̂ = I and Û is unitary.
Proving the stated identity, we have∑

n′

∣∣∣〈n|Û(k)|n′〉
∣∣∣2 =

∑
n′

〈n|Û(k)|n′〉〈n|Û(k)|n′〉∗

=
∑
n′

〈n|Û(k)|n′〉〈n|Û(k)|n′〉†

=
∑
n′

〈n|Û(k)|n′〉〈n′|Û(k)†|n〉

= 〈n|Û(k)

[∑
n′

|n′〉〈n′|

]
Û(k)†|n〉

= 〈n|Û(k)I Û(k)†|n〉 = 〈n|n〉 = 1, (19)

where in the second line we used the fact that the Hermitian conjugate of a scalar is equivalent
to the complex conjugate of the scalar.

�

(b) Given the representation of X̂ in terms of raising and lowering operators,

X̂ =

√
~

2mω

(
â† + â

)
, (20)

the fact that [â, â†] = 1, and the identity eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂] (for [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0),

we find

Û(k) = exp
[
iq
(
â† + â

)]
= exp

[
iq â†

]
exp [iq â] exp

[
−1

2
[iqâ†, iqâ]

]
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= eiqâ
†
eiqâe−q

2/2, (21)

where we defined q ≡ k
√

~
2mω for notational simplicity. As it expresses Û(k) as a product of

exponential operators, Eq.(21) is the desired result.
�

(c) Given â|n〉 =
√
n|n− 1〉 and â†|n〉 =

√
n+ 1|n+ 1〉, we can establish the identities

eiqâ|0〉 = |0〉 and |m〉 = (â†)m√
m!
|0〉. (22)

Now, calculating the matrix element 〈n|Û(k)|0〉, we find

〈n|Û(k)|0〉 = 〈n|eiqâ
†
eiqâ|0〉e−q

2/2

= 〈n|eiqâ
†
|0〉e−q

2/2

= 〈n|
∞∑
`=0

(iq)`

`!
(â†)`|0〉 e−q

2/2

= 〈n|
∞∑
`=0

(iq)`√
`!
|`〉 e−q

2/2

=
(iq)n√
n!
e−q

2/2 (23)

where we used 〈n|`〉 = δn` in the final line. Given that Ek = ~2k2/2m and Eω = ~ω, we can write

q2 =
~k2

2mω
=
Ek
Eω

. (24)

Therefore, the computed matrix element is

〈n|Û(k)|0〉 = in√
n!

(
Ek
Eω

)n/2
exp

[
−Ek
Eω

]
. (25)

We note that as k → 0, Ek → 0, and 〈n|Û(k)|0〉 → 0. This is consistent with the fact that U(k)→ I
as k → 0 and that |n〉 and |0〉 are orthonormal states.

�

3. Before we complete the various parts of the problem, we must express f(θ, φ) in terms of spherical
harmonics. Employing various triogonometric identities, we find

f(θ, φ) ∝ 1

3
+ (1 + cosφ tan 2θ) cos 2θ

=
1

3
+ cos 2θ + cosφ sin 2θ

=
1

3
+ 2 cos2 θ − 1 + 2 sin θ cos θ cosφ

=
2

3

(
3 cos2 θ − 1

)
+ 2 sin θ cos θ cosφ

=
2

3

√
16π

5
Y2,0(θ, φ) +

√
8π

15

[
Y2,−1(θ, φ) + Y2,+1(θ, φ)

]
, (26)
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Because it will be relevant later, we normalize f(θ, φ) by defining

f(θ, φ) =
1√
N

[
2

3

√
16π

5
Y2,0(θ, φ) +

√
8π

15

[
Y2,−1(θ, φ) + Y2,+1(θ, φ)

]]
, (27)

where
N =

4

9
× 16π

5
+ 2× 8π

15
=

16π

15
× 7

3
. (28)

(a) For the hydrogen atom, we have the energy spectrumEn = −13.6 eV/n2. Thus, energies of−13.6
eV and −3.4 eV correspond to the states n = 1 and n = 2, respectively. For the hydrogen atom
wave functions, we know that values of ` for a given n can be 0, . . . , n − 1. Thus, the n = 1
state can have ` = 0, and the n = 2 state can have ` = 1 or ` = 0. None of these ` values are
represented in Eq.(27) and thus the amplitudes for the corresponding n states are zero. Therefore,
upon measuring the energy, the probability of finding −13.6 eV and the probability of finding
−3.4 eV are both zero.

�

(b) Because all of the spherical harmonics in Eq.(27) have ` = 2, the only value of L2 we can obtain
upon measurement is ~2 × 2(2 + 1) = 6~2. We obtain this value with 100% probability.

�

(c) The probability of obtaining the lowest Lz value is the modulus squared of the third term in
Eq.(27). Computing this result we find

Prob(Lz = −~) =
8π

15
× 15

16π
=

3

14
. (29)

�

4. (a) We know that an arbitrary normalized ket in the | ± z〉 basis can be written as

|ψ〉 = cos
θ

2
|+ z〉+ eiφ sin

θ

2
| − z〉 =

(
cos θ2

eiφ sin θ
2

)
, (30)

where θ ∈ [0, π] and φ ∈ [0, 2π]. To fully determine the state we would need to determine the two
parameters θ and φ. Given the following matrix representation of the spin 1

2 operators

Ŝx =
~
2

(
0 1
1 0

)
, Ŝy =

~
2

(
0 −i
i 0

)
, Ŝz =

~
2

(
1 0
0 −1

)
, (31)

and computing 〈Si〉 = 〈ψ|Ŝi|ψ〉with the matrix vector in Eq.(30), we find

〈Sx〉 =
~
2
sin θ cosφ, 〈Sy〉 =

~
2
sin θ sinφ, 〈Sz〉 =

~
2
cos θ. (32)

In the domain θ ∈ [0, π], the function cos θ is one-to-one and is therefore invertible. So if we know
the value of 〈Sz〉, we can determine θ with

θ = cos−1
(
2〈Sz〉
~

)
∈ [0, π]. (33)

However, within the domain φ ∈ [0, 2π], the function cosφ is not one-to-one and is not invertible
unless we restrict its domain. Specifically, given that sinx is only positive for x ∈ [0, π], we know
from Eq.(32) that 〈Sy〉 is positive when φ ∈ [0, π] and is negative when φ ∈ [π, 2π].
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Therefore, solving for φ using Eq.(33) and the first equation in Eq.(32), we find

φ = cos−1

(
〈Sx〉√

~2/4− 〈Sz〉2

)
∈

{
[0, π] if sgn 〈Sy〉 > 0

[π, 2π] if sgn 〈Sy〉 < 0
. (34)

The state Eq.(30) is then completely determined.
The reason we do not need to know the exact value of 〈Sy〉 is that Eq.(30) is defined by two
parameters, and we only need two independent and invertible conditions to fully determine both
parameters. With the values of both 〈Sx〉 and 〈Sz〉 known, we already have these two conditions,
and knowing the sign of 〈Sy〉 ensures that the condition for 〈Sx〉 is invertible.

�

(b) We want to find the inequality (written in terms of the ensemble averages of the spin operators)
which defines the density operator ρ̂ as a mixed state. We will first fully determine ρ̂ and then
compute the inequality.
The density matrix for an ensemble of spin 1

2 states can be represented by a general 2× 2 matrix
with a trace of 1. For a general matrix ρ̂, we have

ρ̂ =

(
a0 a1
a2 a3

)
. (35)

If we impose the condition that Tr ρ̂ = 1, we find the new matrix

ρ̂ =

(
1− a3 a1
a2 a3

)
. (36)

Calculating [Si] = Tr ρ̂Ŝi using Eq.(31) and Eq.(36), we find

[Sx] =
~
2
(a1 + a2), [Sy] =

~
2
i(a1 − a2), [Sz] =

~
2
(1− 2a3), (37)

which, when inverted, yields

a1 =
1

~
([Sx]− i[Sy]) , a2 =

1

~
([Sx] + i[Sy]) , a3 =

1

2
− 1

~
[Sz]. (38)

Therefore, we can write Eq.(36) as

ρ̂ =

(
1
2 + 1

~ [Sz]
1
~ ([Sx]− i[Sy])

1
~ ([Sx] + i[Sy])

1
2 −

1
~ [Sz]

)
=

1

2
I+

1

~
([Sx]σ̂1 + [Sy]σ̂2 + [Sz]σ̂3) , (39)

where σ̂i are the Pauli matrices. Now, if we have a mixed state, then ρ̂2 6= ρ̂ and, relatedly, ρ̂
satisfies the inequality Tr ρ̂2 < 1. Given the Pauli matrix identity

σ̂iσ̂j + σ̂j σ̂i = 2δijI, (40)

(which can be established by direct calculation) and the fact that the Pauli matrices are traceless
we find

Tr ρ̂2 = Tr

[
1

4
I+

1

~2
(
[Sx]

2 + [Sy]
2 + [Sz]

2
)
I
]
=

1

2
+

2

~2
(
[Sx]

2 + [Sy]
2 + [Sz]

2
)
. (41)

Thus, given the mixed state inequality Tr ρ̂2 < 1, we have [Sx], [Sy], and [Sz] are associated with
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a mixed state if they satisfy

[Sx]
2 + [Sy]

2 + [Sz]
2 <

~2

4
. (42)

As a check we note the for the pure ensemble ρ̂ = |+ z〉〈+z|, [Sy] = [Sx] = 0 and [Sz] = ~/2, and
the inequality in Eq.(42) becomes an equality.

�
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