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On Rotations, Commutations, and Change of Bases

Week Summary
◦ Rotation Operator: The rotation operator is a unitary operator which can be applied to states and

other operators to transform them into their results in a rotated coordinate system. For example, the
operator for rotation by φ around the k (i.e., + z) direction is

R̂(φk) = exp

(
− i
~
Ĵzφ

)
(1)

where Ĵz is the hermitian z-direction angular momentum operator.
Rotation operators about different directions do not commute (e.g., R̂(φ1j)R̂(φ2k) 6= R̂(φ2k)R̂(φ1j)), a
fact related to the non-commutation of angular momentum operators:

[Ĵk, Ĵ`] = i~ εk`mĴm (2)

where εk`m is +1 if (k, `,m) are even permutations of (1, 2, 3), -1 if (k, `,m) are odd permutations of
(1, 2, 3), and 0 if any (k, `,m) has a repeated component.

◦ Commuting Observables: Observables represented by the operators Â and B̂ can be measured si-
multaneously (i.e., each measured without affecting the measurement of the other) if the operators
commute. This result is summarized by the uncertainty principle

∆φÂ∆φB̂ ≥
1

2

∣∣∣〈φ|[Â, B̂]|φ〉
∣∣∣ , (3)

where ∆φÔ =

√
〈φ|Ô2|φ〉 − 〈φ|Ô|φ〉2. A standard example is angular momentum (orbital and spin),

with the angular momentum for various direction unable to be measured without affecting the angular
momentum measurement for other directions (due to the non-commutation expressed by Eq.(2))

◦ Change of Basis: States and operators when written in vector and matrix notation, respectively, are
always written in some eigenbasis (say |αi〉 for i = 1, . . . , N ) of orthonormal eigenvectors which span
the state space. To transform the states and operators to a new basis, say |βi〉, we apply the transfor-
mations1 [

Â
]
βi basis = Û

[
Â
]
αi basisÛ

†, (4)

and [
|ψ〉]βi basis = Û

[
|ψ〉
]
αi basis (5)

where the elements of the unitary matrix Û (which transforms from the α basis to the β basis) are
defined by Ûij = 〈βi|αj〉. Generally, the change of basis matrix Û is defined as

Ûij = 〈final basisi|initial basisj〉. (6)

1We note Townsend uses S†ÂS to denote this transformation, and thus the Û defined in Eq.(6) is Û = S†. Regardless of the definition
of the unitary operator, what is important is that the ”final basis” appears as a bra on the left hand side of the operator/state.
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1 Problems
1. Commutators and degenerate eigenvalues [From Last Week]

Let us take N ×N matrices A, B, and C satisfying

[A,B] = 0, [A,C] = 0, [B,C] 6= 0. (7)

Let us assume that A has a non-degenerate space eigenvalues. Is this possible?2

2. Rotations don’t commute! Or do they?
Alice and Betty are having an argument about rotation in three dimensions. Alice believes that ro-
tations (classical and quantum) about orthogonal axes do not commute, while Betty thinks there are
exceptions to this claim.

Betty: I’m telling you, it’s possible to have [Ĵi, Ĵj ] = 0 when i 6= j.

Alice: Nonsense!

Betty: No, listen. If I rotate a system by an auxiliary angle φ and then by an azimuthal angle3

θ, then I would get the same resulting system as if I performed the azimuthal θ rotation before
the auxiliary φ rotation. These rotations are in orthogonal directions but their order doesn’t
matter. They commute!

Who is right and why?

3. Practicing Spins
Suppose our particle is in the state

|χ〉 =
1 + i√

6
|+, z〉+

2√
6
|−, z〉. (8)

(a) What are the probabilities of getting +~/2 and −~/2 if you measure Sz? What is 〈Sz〉?
(b) What are the probabilities of getting +~/2 and −~/2 if you measure Sx? (Note: this concerns a

different measurement for the state |χ〉, not another measurement which occurs after that in (b).)
What is 〈Sx〉?

4. Sequential Measurements
An operator Â, representing observable A, has two normalized eigenstates |α1〉 and |α2〉, with eigen-
values a1 and a2, respectively. Operator B̂, representing observableB, has two normalized eigenstates
|β1〉 and |β2〉, with eigenvalues b1 and b2. The two sets of eigenstates are related by

|α1〉 = (3|β1〉+ 4|β2〉)/5, |α2〉 = (4|β1〉 − 3|β2〉)/5. (9)

(a) Observable A is measured, and the value a1 is obtained. What is the state of the system immedi-
ately after this measurement?

(b) If B is now measured, what are the possible results, and what are their probabilities?
(c) Right after the measurement of B, A is measured again. What is the probability of getting a1?

(Note: the answer would be different if I had told you the outcome of the B measurement)
(d) Express [Â, B̂] in the {|α1〉, |α2〉} basis. Interpret this result in the context of Eq.(3) and the results

of the previous parts.
2Last week, this problem was phrased as: Show that at least one eigenvalue ofA is degenerate. Why is [B,C] 6= 0 important in establishing

this?
3These angles are the ones which define the arbitrary spherical coordinate direction n = sin θ cosφx + sin θ sinφy + cos θz.
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2 Solutions
1. (On previous week’s solution set)

2. It is not possible to have [Ji, Jj ] = 0 when i 6= j. Betty is confusing two things: rotation operators and
the generators which define those operators. A general quantum mechanical rotation operator by an
angle φ about a direction ~n is defined as

R̂(~n, φ) = exp

(
−iφ~n ·

~̂
J

~

)
. (10)

where ~̂
J = (Ĵx, Ĵy, Ĵz) defines the generators of rotations in R3. By definition, these generators must

satisfy
[Ĵi, Ĵj ] = iεijk~Ĵk. (11)

where εijk is the Levi civita symbol. When Betty claims that rotations can commute she is implicitly
talking about Eq.(10), but she then incorrectly references the commutators of the generators of those
rotations.
This is not to say that rotations operators actually do commute. In this regard, Betty is confusing angles
which define the coordinates of an object and angles which define a rotation operation on a coordinate
system.
For example if we were to place a heavy top at an angle θ = θ′ and φ = 0 with respect to the z axis
and then rotate that top about the z axis by an angle φ = φ′, then the heavy top would be in the
same configuration if we were to first rotate it by an angle φ = φ′ about the z axis and then place it at
an angle θ = θ′ with respect to the z axis. However, these two ”rotations” do not correspond to the
Rotation operators for the R3 coordinate system; they instead define coordinates on a sphere in R3. It
is specifically, the rotation operators4 which do not commute.

�

3. (a) For the state
|χ〉 =

1 + i√
6
|+, z〉+

2√
6
|−, z〉, (12)

the probability to get a +~/2 value upon measurement of Sz is the modulus squared of the coef-
ficient of the |+, z〉 state. Thus we have

Prob(Sz = +~/2) =

∣∣∣∣1 + i√
6

∣∣∣∣2 =
1

3
. (13)

Similarly, we have the probability to get a −~/2 value upon measurement of Sz is

Prob(Sz = −~/2) =

∣∣∣∣ 2√
6

∣∣∣∣2 =
2

3
. (14)

Thus the average value of Sz is

〈Sz〉 =
~
2

1

3
+

(
−~

2

)
2

3
= −~

6
. (15)

�
4In more mathematical parlance, these operators are the generators defining the R3 rotation group of SO(3).
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(b) To find the corresponding results for Sz , it is easiest to express |χ〉 in the |±, x〉 basis. To do so we
use the basis relations

|+, z〉 =
1√
2
|+, z〉+

1√
2
|+, z〉, (16)

|−, z〉 =
1√
2
|+, x〉 − 1√

2
|+, x〉. (17)

Thus |χ〉 in the |±, x〉 basis is

|χ〉 =
3 + i√

12
|+, x〉+

−1 + i√
12
|−, x〉. (18)

The probability to get a +~/2 value upon measurement of Sx is then

Prob(Sx = +~/2) =

∣∣∣∣3 + i√
12

∣∣∣∣2 =
5

6
. (19)

And the average value of Sx is

〈Sx〉 =
~
2

5

6
+

(
−~

2

)
1

6
=

~
3
. (20)

�

4. (a) By one of the postulates of quantum mechanics, measurements of observables only yield eigen-
values of the observable’s operator. And subsequent to the measurement, the system is in the
eigenket corresponding to the measured eigenvalue. Thus after obtaining a measurement of a1,
the system must be in the state |α1〉.

(b) If the system is in the state |α1〉, then, upon measurement of B, the probability of obtaining the
possible eigenvalues of B are

Prob(B = b1) = |〈β1|α1〉|2 =
9

25
(21)

Prob(B = b2) = |〈β2|α1〉|2 =
16

25
. (22)

�

(c) The probability to obtain the measurement a1 after passing through an apparatus that measures
the value of B is equal to the sum of the conditional probabilities of each possible result of B
given A = a1, weighted by the probability of the result B. Mathematically,

Probfinal(a1) = Prob(a1|b1)Probinitial(b1) + Prob(a1|b2)Probinitial(b2). (23)

The quantities Pinitial(b1,2) are what we found in (a). The conditional probabilities P (a1|b1,2) are
the probabilities of obtaining a measurement of a1 given that the system is in the state |β1,2〉. By
the mathematical properties of the modulus, these conditional probabilities are also identical to
what we found in (a), but for explicitness we calculate them explicitly.
Inverting the |α1,2〉-|β1,2〉 basis equations we find

|β1〉 = (3|α1〉+ 4|α2〉)/5, |β2〉 = (4|α1〉 − 3|α2〉)/5. (24)

Thus the conditional probabilities to obtain A = a1 when one is in the state |β1〉 or |β2〉 are,
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respectively,

Prob(a1|b1) = |〈α1|β1〉|2 =
9

25
(25)

Prob(a1|b2) = |〈α1|β2〉|2 =
16

25
. (26)

Thus, the probability to obtain a measurement of a1 upon measuringA (after passing through an
apparatus which measures B with some unknown result) is

Probfinal(a1) =
92

252
+

162

252
=

337

625
. (27)

�

(d) To compute [Â, B̂] in the basis |α1,2〉 we need to express Â and B̂ in the appropriate basis. In its
own basis, Â has exclusively diagonal elements defined by its eigenvalues

Â =

(
a1 0
0 a2

)
[In the |α1,2〉 basis]. (28)

B̂ has a similar form in its own basis:

B̂ =

(
b1 0
0 b2

)
[In the |β1,2〉 basis]. (29)

To find B̂ in the |α1,2〉 basis we use the change of basis matrix implied by Eq.(9). Namely, the
matrix to change from the |β1,2〉 basis to the |α1,2〉 basis is

U =
1

5

(
3 4
4 −3

)
[To go from |β1,2〉 to |α1,2〉 basis]. (30)

Thus, B̂ in the desired basis is

B̂ = UB̂U†

=
1

5

(
3 4
4 −3

)(
b1 0
0 b2

)
1

5

(
3 4
4 −3

)
=

1

25

(
9b1 + 16b2 12(b1 − b2)
12(b1 − b2) 16b1 + 9b2

)
[In the |α1,2〉 basis]. (31)

We thus find that the commutator of Â and B̂ in the |α1,2〉 basis is

[Â, B̂] =
1

25

[(
a1 0
0 a2

)
,

(
9b1 + 16b2 12(b1 − b2)
12(b1 − b2) 16b1 + 9b2

)]
=

12

25
(b1 − b2)(a1 − a2)

(
0 1
−1 0

)
[In the |β1,2〉 basis], (32)

which is not equal to zero. We note that although the precise form of [Â, B̂] is dependent on the
basis in which we express it, the fact that it is nonzero is basis independent. By the Uncertainty
principle

∆φÂ∆φB̂ ≥
1

2

∣∣∣〈φ|[Â, B̂]|φ〉
∣∣∣ , (33)

the fact that [Â, B̂] 6= 0 implies that it is not possible to precisely measureA andB simultaneously.
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Interpreted differently, a relatively precise measurement ofAwould require a relatively imprecise
measurement of B.
We should note that Eq.(33) is not clearly meaningful in this problem, because since we are dealing
with an eigenket of Â in the initial part of the problem, ∆φA = 0 and 〈φ|[Â, B̂]|φ〉 = 0 because
|φ〉 = |α1〉.
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