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Physics 143a — Workshop 4

On Time Evolution

Week Summary

o Time Evolution: The properties of a quantum system at a time ¢ are completely defined by specifying
the system’s state ket at ¢: |¢(t)). The following is a postulate of quantum mechanics:

—-Schrédinger equation: The time evolution of the state ket |¢(t)) of a quantum system is
governed by the evolution equation

in S lo(0) = Hl(t), 0

where H, termed the Hamiltonian, is the Hermitian operator associated with the energy of
the system.

Equivalently, we could write this postulate as an integral equation solution to Eq.(I):

—Evolution Operator: The time evolution of the state of a quantum system from an initial
ket |¢(to)) to a final ket |p(t)) is governed by the evolution equation

(1)) = U(t, to)|p(to)), )
where

Ult, to) = exp (—;(t - to)fl> 3)

is termed the time-evolution operator (here the Hamiltonian H is assumed to be time indepen-
dent).

o Time Evolution of States and Operators: The explicit solution to Eq.(T) is:
[e(0) = 3 ¢y t)e B0 ) @
J

where ¢;(ty) = (E;|¢(to)), and E; and |E;) are the energy-eigenvalue and energy-eigenstate, respec-
tively, of the H. Technically speaking, we say |E;) satisfies the time-independent Schrodinger equation:

H|E;) = Ej|E;). 5)

From Eq.(T), we also find that the time-evolution of the expectation value (for arbitrary states) of an
operator A

G0 = (5 A) + L1 4. ©

A corollary of Eq.(6) is that the average values of operators without an explicit time dependence and
which commute with the Hamiltonian are independent of time.



1 Problems

1. Practice with Time-Evolution Operator
Consider a normalized initial state |©(0)) at t = 0, with a spread in energy defined by

(ALE)? = (H?) — (H)*. 7)

Compute the probability |(¢(At)|¢(0))]? that after a very short time At the system is still in state |).
Write the result in terms of A,E?, h and At up to second order in At.

2. Linear Three Atom Molecule (Time-Independent Quantum Mechanics)
We consider the states of an electron in a linear three-atom molecule (such as N3 or C3) with equally
spaced atoms L, C, R at a fixed distance from one another.

O—O0—®

Figure 1: Linear Three Atom Molecule

Let |¢1), [¢¥r), and |¢c) be the eigenstates of an observable B corresponding to an electron localized in
the vicinity of the atoms L, C, and R, respectively:

Blyn) = —dlgr), Bléc) =0, Blur) = +dlur). ®)
In the basis {|11), |¥c), |¢r)}, the Hamiltonian of the system is represented by the matrix
. EO —a 0
H=| —-a Ey —a |, a>0. 9)
0 —a E()

(a) Calculate the energy levels and eigenstates of H.

(b) Suppose the electron is in the ground state (i.e., the lowest energy state). What are the probabili-
ties of finding the electron in the vicinity of L, C, and R?

(c) Suppose the electron is in the state |¢/1), and we measure its energy. What values can we find,
with what probabilities?

3. Linear Three Atom Molecule (Time-Dependent Quantum Mechanics)
We consider again the system of the previous problem, but now we consider its time dependence.
Suppose, the electron is in the state |¢(0)) = |¢1) at time ¢ = 0:

(a) Whatis |¢(t)), the state of the electron at time ¢?

(b) Compute the probability of finding the particle at L.

(c) Using the result from Problem 1, what is A, E? (the variance in energy) for this state?
(d) (Only if You Have Time)

i. Compute two more quantities: the probability of finding the particle at R and the probability
of finding the particle at C.
ii. Whatis (B) as a function of time. (Hint: If you write more than three lines, you're taking the
scenic route.)
iii. Using Eq.(6), compute the quantity
([, BY), (10)

as a function of time.



2 Solutions

1.

2.

If we begin at ¢ = 0 in a state |p(0)), then at a time ¢ = A¢ we would be in the state

p(AL)) = e /M (0)). (11)

Thus computing the square of the inner product between this time-evolved state and the initial state
we find
. 2
[((0)[p(AD))|* = ‘(@(O)IBﬂH”hI@(O»
A A~ B 2
- ’<<p(0)|1 —iAtH R — AR 212 O(At3)|<p(0)>‘

= [1 —iAt(E)/h — A (B?) /21 + O(At®)
=1+ A3 (E)?/h* — A (B /h* + O(At?), (12)

| 2

where we used the definitions (E) = (p(0)|H|¢(0)) and (E2) = (p(0)|H?2|¢(0)). Thus we have
[(p(O)|p(A1)[* = 1 = AP (ALE)*/1* + O(AE?). (13)

(a) To compute the energy levels and eigenstates of // we employ the standard procedure: Comput-
ing the characteristic equation we have

Ey—F —a 0
—a Ey— F —a
0 —a Ey—F

0= =(Ey— E) [(Ey — E)> —a®] —a®(Ey — E). (14)

Thus we have the eigenvalue constraint (Ey — E) [(Eg — E)? — 2a?] = 0, which implies that the

energy eigenvalues are £ = Ey, E = Ey + av?2,and E = Ey — av/2. Given these eigenvalues and
the Hamiltonian

R Eo —a 0
H=| —a Ey —a |, a>0, (15)
0 —a EO
we can infer (from inspection or calculation) that the system has the eigenvectors
1 1
‘E1> = 5 \/i E1 = EO - a\/i (16)
1
1 1
E)y=—1| 0 E,=FE 17
|E2) vl 2 0 (17)
1 1
|E3) = B -2 E3 = Ey +aV2. (18)
1

We can write these eigenvectors in ket notation as

1) = 5 (en) +Vale) + om) (19)



1

1Ba) = 7 () ) 0)
1B5) = 5 (192 = Vlge) +1on)) el)
|

(b) From the ket representation of the ground state,

1
1B2) = 5 (1) +V2leo) + vm)) 22
we can infer that the probabilities to find the particle in the vicinity of L, C, and R are
1 1 1
Prob(L) = |(¥s|Ex)|? = 7. Prob(C) = [(tic|Ex)[* = 5. Prob(®) = |(WrlEV) = 7. (23)

(c) From the results of part (a), we know that measurements of energy yield the possible eigenvalues
Eo, Eo — av/2, By + av/2. With the fact that |(«|3)|? = |(8]a)|?, we can infer that these eigenvalues
occur with the probabilities

1
Prob(Ey — av2) = [(Exfyn)f = (24)

1
Prob(Ey) = |(Ea|yr)|* = 5 (25)

1
Prob(Ey + av'2) = |(Ea[¢r)|* = 1 (26)
|

(a) If our state begins in the state |¢;,), then by the results of 2 (a), we have

1 1 1

0(0)) = [¥2) = 51E1) + ﬁ|E2> +5Es). 27)
Applying the time evolution operator to Eq.(27), we find
[p(t)) = e~/ (0))
1 1, 1 .

— 5671(E07a\/§)t/h|E1> + ﬁeszot/h‘Eﬁ + 5671(E0+a\/§)t/h|E3>. (28)
|

(b) Computing the probability to be in the state |¢;,) at time ¢, we find

Prob(L, t) = (¢ |¢(t))[?

2

1, 1 _, 1 .

_ 76—1(E0—a\/§)t/ﬁ<wL|E1> + 76_1E0t/h<¢L|E2> + 76_1(E0+a\/§)t/h<@/1L|E3>
2 V2 2

1 1 1 2

_ 1e—i(E0—aﬁ)t/h + §e—iEot/h + Ze—i(Eo+a\/§)t/h

o—iEot/h 2

- (1 4 L iavatn | 16—ia\/§t/h>

2 2 2




(1 + cos(ax@t/h))2 = cos® (at/hﬂ) (29)

=] =

(c) If we take our time ¢ in Eq.(29) to be small (i.e., t = At, At < h/a), then we can expand the result
in a Taylor series:

X 2

Prob(L, At) = (¢hp e~ HA Ay, ) =1 — AtQ% L O(A). (30)

Comparing this result with that of 1 (b), we find the variance in the energy for the state |11,) to be
(Ay, E)? = 2. (31)

(d) i. By the procedure exactly analogous to that in 3(a) and 3(b), we find the probabilities to be in
the states C' and R are

Prob(R, ¢) = sin® (at /h\/§) . Prob(C, t) = 2sin? (at /Wﬁ) cos? (at /h\@) RNGY)
Checking the normalization of this result we have

Prob(L, t) + Prob(C, t) + Prob(R, t)
= cos® (at/h\/ﬁ) + sin* (at/h\@) + 2sin? (at/h\@) cos? (at/h\/i)

{cos2 (at/hﬂ) + sin? (at/h\/i)] ’ =1, (33)

as expected.

ii. To compute the time dependent (B) we compute the probability weighted sum to be found
at —d, 0, and d. Doing so we have

(B) = —d - Prob(L, t) + 0 - Prob(C, t) + d - Prob(R, t)
-4 (1 + cos(axﬁt/ii))2 + % (1 — cos(ax@t/h))2

4
= —dcos(aV/2t/h) (34)
]
iii. By Eq.(6), we have
- hd dav2
I, Bllo(t)) = &4 (B) = 12 sin(av/at/n). 9)

We can check this result through explicit computation. Given the Hamiltonian and the posi-
tion operator, we have

o Ey —a 0 —-d 0 0 —-d 0 0 Ey —a O
[H,B]=| —a Ey -—a 0 0 O - 0 0 O —a FEy —a
0 —-a E 0 0 +d 0 0 +d 0 —-a E

—dEO 0 0 —dEo da 0
da 0 —da | — 0 0 0
0 0 dEo 0 —da dEO



0 -1 0
=da| 1 0 -1 |. (36)
0 1 0

Our time-dependent state ket in the |¢1.), |¢¢), [¢¥r) basis is

e—i(Bo—av)t/h 1 e—iBot/h 1 o—i(Bo+av)/h 1
ety = e |+ T Py G
4 | 2 ) 1 )

eiEot/h( 1+ cos(av/2t/h) )

3 iv2sin(av/2t/h)
—1 + cos(av/2t/h)

(37)

Placing [H, B] between two time-dependent state kets, we have

((®)|[H, Blle(t))
ciBot/h

=3 (1 + cos(av/2t/h), —iv/2sin(av/2t/h), —1 + cos(av/2t /L))

0 —1 0\ —imesn 1 + cos(av/2t/h)
xda| 1 0 -1 5 iv2sin(av/2t/h)
0 1 0 —1 + cos(av/2t/h)

da 1 + cos(av/2t/h)
— I(_Zﬂ sin(a\/it/h), —2.iV2 sin(a\/it/h) iv2sin(av/2t/h)
—1 + cos(av/2t/h)

= % [—i 2sin(av/2t/h) — 2iv/2sin(av/2t/h) — iv/2sin(aV/2t /h)}

_ dav/2

i

sin(av/2t/h), (38)

as previously calculated.
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