Physics 143a - Workshop 4

On Time Evolution

Week Summary

- Time Evolution: The properties of a quantum system at a time t are completely defined by specifying the system's state ket at $t:|\varphi(t)\rangle$. The following is a postulate of quantum mechanics:
-Schrödinger equation: The time evolution of the state ket $|\varphi(t)\rangle$ of a quantum system is governed by the evolution equation

$$
\begin{equation*}
i \hbar \frac{d}{d t}|\varphi(t)\rangle=\hat{H}|\varphi(t)\rangle \tag{1}
\end{equation*}
$$

where \hat{H}, termed the Hamiltonian, is the Hermitian operator associated with the energy of the system.

Equivalently, we could write this postulate as an integral equation solution to Eq. (1):
-Evolution Operator: The time evolution of the state of a quantum system from an initial ket $\left|\varphi\left(t_{0}\right)\right\rangle$ to a final ket $|\varphi(t)\rangle$ is governed by the evolution equation

$$
\begin{equation*}
|\varphi(t)\rangle=\hat{U}\left(t, t_{0}\right)\left|\varphi\left(t_{0}\right)\right\rangle \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{U}\left(t, t_{0}\right)=\exp \left(-\frac{i}{\hbar}\left(t-t_{0}\right) \hat{H}\right) \tag{3}
\end{equation*}
$$

is termed the time-evolution operator (here the Hamiltonian \hat{H} is assumed to be time independent).

- Time Evolution of States and Operators: The explicit solution to Eq. (1) is:

$$
\begin{equation*}
|\varphi(t)\rangle=\sum_{j} c_{j}\left(t_{0}\right) e^{-i E_{j}\left(t-t_{0}\right) / \hbar}\left|E_{j}\right\rangle \tag{4}
\end{equation*}
$$

where $c_{j}\left(t_{0}\right)=\left\langle E_{j} \mid \varphi\left(t_{0}\right)\right\rangle$, and E_{j} and $\left|E_{j}\right\rangle$ are the energy-eigenvalue and energy-eigenstate, respectively, of the \hat{H}. Technically speaking, we say $\left|E_{j}\right\rangle$ satisfies the time-independent Schrödinger equation:

$$
\begin{equation*}
\hat{H}\left|E_{j}\right\rangle=E_{j}\left|E_{j}\right\rangle \tag{5}
\end{equation*}
$$

From Eq. (1]), we also find that the time-evolution of the expectation value (for arbitrary states) of an operator \hat{A}

$$
\begin{equation*}
\frac{d}{d t}\langle\hat{A}\rangle=\left\langle\frac{\partial}{\partial t} \hat{A}\right\rangle+\frac{i}{\hbar}\langle[\hat{H}, \hat{A}]\rangle \tag{6}
\end{equation*}
$$

A corollary of Eq.(6) is that the average values of operators without an explicit time dependence and which commute with the Hamiltonian are independent of time.

1 Problems

1. Practice with Time-Evolution Operator

Consider a normalized initial state $|\varphi(0)\rangle$ at $t=0$, with a spread in energy defined by

$$
\begin{equation*}
\left(\Delta_{\varphi} E\right)^{2} \equiv\left\langle\hat{H}^{2}\right\rangle-\langle\hat{H}\rangle^{2} \tag{7}
\end{equation*}
$$

Compute the probability $|\langle\varphi(\Delta t) \mid \varphi(0)\rangle|^{2}$ that after a very short time Δt the system is still in state $|\varphi\rangle$. Write the result in terms of $\Delta_{\varphi} E^{2}, \hbar$ and Δt up to second order in Δt.
2. Linear Three Atom Molecule (Time-Independent Quantum Mechanics)

We consider the states of an electron in a linear three-atom molecule (such as N_{3} or C_{3}) with equally spaced atoms L, C, R at a fixed distance from one another.

Figure 1: Linear Three Atom Molecule
Let $\left|\psi_{\mathrm{L}}\right\rangle,\left|\psi_{\mathrm{R}}\right\rangle$, and $\left|\psi_{\mathrm{C}}\right\rangle$ be the eigenstates of an observable \hat{B} corresponding to an electron localized in the vicinity of the atoms L, C, and R, respectively:

$$
\begin{equation*}
\hat{B}\left|\psi_{\mathrm{L}}\right\rangle=-d\left|\psi_{\mathrm{L}}\right\rangle, \quad \hat{B}\left|\psi_{\mathrm{C}}\right\rangle=0, \quad \hat{B}\left|\psi_{\mathrm{R}}\right\rangle=+d\left|\psi_{\mathrm{R}}\right\rangle . \tag{8}
\end{equation*}
$$

In the basis $\left\{\left|\psi_{\mathrm{L}}\right\rangle,\left|\psi_{\mathrm{C}}\right\rangle,\left|\psi_{\mathrm{R}}\right\rangle\right\}$, the Hamiltonian of the system is represented by the matrix

$$
\hat{H}=\left(\begin{array}{ccc}
E_{0} & -a & 0 \tag{9}\\
-a & E_{0} & -a \\
0 & -a & E_{0}
\end{array}\right), \quad a>0
$$

(a) Calculate the energy levels and eigenstates of \hat{H}.
(b) Suppose the electron is in the ground state (i.e., the lowest energy state). What are the probabilities of finding the electron in the vicinity of L, C, and R ?
(c) Suppose the electron is in the state $\left|\psi_{\mathrm{L}}\right\rangle$, and we measure its energy. What values can we find, with what probabilities?
3. Linear Three Atom Molecule (Time-Dependent Quantum Mechanics)

We consider again the system of the previous problem, but now we consider its time dependence. Suppose, the electron is in the state $|\varphi(0)\rangle=\left|\psi_{\mathrm{L}}\right\rangle$ at time $t=0$:
(a) What is $|\varphi(t)\rangle$, the state of the electron at time t ?
(b) Compute the probability of finding the particle at L .
(c) Using the result from Problem 1, what is $\Delta_{\varphi} E^{2}$ (the variance in energy) for this state?
(d) (Only if You Have Time)
i. Compute two more quantities: the probability of finding the particle at R and the probability of finding the particle at C.
ii. What is $\langle B\rangle$ as a function of time. (Hint: If you write more than three lines, you're taking the scenic route.)
iii. Using Eq. (6), compute the quantity

$$
\begin{equation*}
\langle[\hat{H}, \hat{B}]\rangle \tag{10}
\end{equation*}
$$

as a function of time.

2 Solutions

1. If we begin at $t=0$ in a state $|\varphi(0)\rangle$, then at a time $t=\Delta t$ we would be in the state

$$
\begin{equation*}
|\varphi(\Delta t)\rangle=e^{-i \hat{H} t / \hbar}|\varphi(0)\rangle \tag{11}
\end{equation*}
$$

Thus computing the square of the inner product between this time-evolved state and the initial state we find

$$
\begin{align*}
|\langle\varphi(0) \mid \varphi(\Delta t)\rangle|^{2} & \left.=\left|\langle\varphi(0)| e^{-i \hat{H} t / \hbar}\right| \varphi(0)\right\rangle\left.\right|^{2} \\
& \left.=\left|\langle\varphi(0)| 1-i \Delta t \hat{H} / \hbar-\Delta t^{2} \hat{H}^{2} / 2 \hbar^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right| \varphi(0)\right\rangle\left.\right|^{2} \\
& =\left|1-i \Delta t\langle E\rangle / \hbar-\Delta t^{2}\left\langle E^{2}\right\rangle / 2 \hbar^{2}+\mathcal{O}\left(\Delta t^{3}\right)\right|^{2} \\
& =1+\Delta t^{2}\langle E\rangle^{2} / \hbar^{2}-\Delta t^{2}\left\langle E^{2}\right\rangle / \hbar^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{12}
\end{align*}
$$

where we used the definitions $\langle E\rangle \equiv\langle\varphi(0)| \hat{H}|\varphi(0)\rangle$ and $\left\langle E^{2}\right\rangle \equiv\langle\varphi(0)| \hat{H}^{2}|\varphi(0)\rangle$. Thus we have

$$
\begin{equation*}
|\langle\varphi(0) \mid \varphi(\Delta t)\rangle|^{2}=1-\Delta t^{2}\left(\Delta_{\varphi} E\right)^{2} / \hbar^{2}+\mathcal{O}\left(\Delta t^{3}\right) \tag{13}
\end{equation*}
$$

2. (a) To compute the energy levels and eigenstates of \hat{H} we employ the standard procedure: Computing the characteristic equation we have

$$
0=\left|\begin{array}{ccc}
E_{0}-E & -a & 0 \tag{14}\\
-a & E_{0}-E & -a \\
0 & -a & E_{0}-E
\end{array}\right|=\left(E_{0}-E\right)\left[\left(E_{0}-E\right)^{2}-a^{2}\right]-a^{2}\left(E_{0}-E\right)
$$

Thus we have the eigenvalue constraint $\left(E_{0}-E\right)\left[\left(E_{0}-E\right)^{2}-2 a^{2}\right]=0$, which implies that the energy eigenvalues are $E=E_{0}, E=E_{0}+a \sqrt{2}$, and $E=E_{0}-a \sqrt{2}$. Given these eigenvalues and the Hamiltonian

$$
\hat{H}=\left(\begin{array}{ccc}
E_{0} & -a & 0 \tag{15}\\
-a & E_{0} & -a \\
0 & -a & E_{0}
\end{array}\right), \quad a>0
$$

we can infer (from inspection or calculation) that the system has the eigenvectors

$$
\begin{align*}
& \left|E_{1}\right\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right) \quad E_{1}=E_{0}-a \sqrt{2} \tag{16}\\
& \left|E_{2}\right\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right) \quad E_{2}=E_{0} \tag{17}\\
& \left|E_{3}\right\rangle=\frac{1}{2}\left(\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right) \quad E_{3}=E_{0}+a \sqrt{2} \tag{18}
\end{align*}
$$

We can write these eigenvectors in ket notation as

$$
\begin{equation*}
\left|E_{1}\right\rangle=\frac{1}{2}\left(\left|\psi_{L}\right\rangle+\sqrt{2}\left|\psi_{C}\right\rangle+\left|\psi_{R}\right\rangle\right) \tag{19}
\end{equation*}
$$

$$
\begin{align*}
\left|E_{2}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|\psi_{L}\right\rangle-\left|\psi_{R}\right\rangle\right) \tag{20}\\
\left|E_{3}\right\rangle & =\frac{1}{2}\left(\left|\psi_{L}\right\rangle-\sqrt{2}\left|\psi_{C}\right\rangle+\left|\psi_{R}\right\rangle\right) \tag{21}
\end{align*}
$$

(b) From the ket representation of the ground state,

$$
\begin{equation*}
\left|E_{1}\right\rangle=\frac{1}{2}\left(\left|\psi_{L}\right\rangle+\sqrt{2}\left|\psi_{C}\right\rangle+\left|\psi_{R}\right\rangle\right) \tag{22}
\end{equation*}
$$

we can infer that the probabilities to find the particle in the vicinity of L, C, and R are

$$
\begin{equation*}
\operatorname{Prob}(\mathrm{L})=\left|\left\langle\psi_{L} \mid E_{1}\right\rangle\right|^{2}=\frac{1}{4}, \quad \operatorname{Prob}(\mathrm{C})=\left|\left\langle\psi_{C} \mid E_{1}\right\rangle\right|^{2}=\frac{1}{2}, \quad \operatorname{Prob}(\mathrm{R})=\left|\left\langle\psi_{R} \mid E_{1}\right\rangle\right|^{2}=\frac{1}{4} \tag{23}
\end{equation*}
$$

(c) From the results of part (a), we know that measurements of energy yield the possible eigenvalues $E_{0}, E_{0}-a \sqrt{2}, E_{0}+a \sqrt{2}$. With the fact that $|\langle\alpha \mid \beta\rangle|^{2}=|\langle\beta \mid \alpha\rangle|^{2}$, we can infer that these eigenvalues occur with the probabilities

$$
\begin{align*}
\operatorname{Prob}\left(E_{0}-a \sqrt{2}\right) & =\left|\left\langle E_{1} \mid \psi_{L}\right\rangle\right|^{2}=\frac{1}{4} \tag{24}\\
\operatorname{Prob}\left(E_{0}\right) & =\left|\left\langle E_{2} \mid \psi_{L}\right\rangle\right|^{2}=\frac{1}{2} \tag{25}\\
\operatorname{Prob}\left(E_{0}+a \sqrt{2}\right) & =\left|\left\langle E_{2} \mid \psi_{L}\right\rangle\right|^{2}=\frac{1}{4} \tag{26}
\end{align*}
$$

3. (a) If our state begins in the state $\left|\psi_{L}\right\rangle$, then by the results of 2 (a), we have

$$
\begin{equation*}
|\varphi(0)\rangle=\left|\psi_{L}\right\rangle=\frac{1}{2}\left|E_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|E_{2}\right\rangle+\frac{1}{2}\left|E_{3}\right\rangle . \tag{27}
\end{equation*}
$$

Applying the time evolution operator to Eq. (27), we find

$$
\begin{align*}
|\varphi(t)\rangle & =e^{-i \hat{H} t / \hbar}|\varphi(0)\rangle \\
& =\frac{1}{2} e^{-i\left(E_{0}-a \sqrt{2}\right) t / \hbar}\left|E_{1}\right\rangle+\frac{1}{\sqrt{2}} e^{-i E_{0} t / \hbar}\left|E_{2}\right\rangle+\frac{1}{2} e^{-i\left(E_{0}+a \sqrt{2}\right) t / \hbar}\left|E_{3}\right\rangle \tag{28}
\end{align*}
$$

(b) Computing the probability to be in the state $\left|\psi_{L}\right\rangle$ at time t, we find

$$
\begin{aligned}
\operatorname{Prob}(\mathrm{L}, t) & =\left|\left\langle\psi_{L} \mid \varphi(t)\right\rangle\right|^{2} \\
& =\left|\frac{1}{2} e^{-i\left(E_{0}-a \sqrt{2}\right) t / \hbar}\left\langle\psi_{L} \mid E_{1}\right\rangle+\frac{1}{\sqrt{2}} e^{-i E_{0} t / \hbar}\left\langle\psi_{L} \mid E_{2}\right\rangle+\frac{1}{2} e^{-i\left(E_{0}+a \sqrt{2}\right) t / \hbar}\left\langle\psi_{L} \mid E_{3}\right\rangle\right|^{2} \\
& =\left|\frac{1}{4} e^{-i\left(E_{0}-a \sqrt{2}\right) t / \hbar}+\frac{1}{2} e^{-i E_{0} t / \hbar}+\frac{1}{4} e^{-i\left(E_{0}+a \sqrt{2}\right) t / \hbar}\right|^{2} \\
& =\left|\frac{e^{-i E_{0} t / \hbar}}{2}\left(1+\frac{1}{2} e^{i a \sqrt{2} t / \hbar}+\frac{1}{2} e^{-i a \sqrt{2} t / \hbar}\right)\right|^{2}
\end{aligned}
$$

$$
\begin{equation*}
=\frac{1}{4}(1+\cos (a \sqrt{2} t / \hbar))^{2}=\cos ^{4}(a t / \hbar \sqrt{2}) \tag{29}
\end{equation*}
$$

(c) If we take our time t in Eq. 29) to be small (i.e., $t=\Delta t, \Delta t \ll \hbar / a$), then we can expand the result in a Taylor series:

$$
\begin{equation*}
\operatorname{Prob}(\mathrm{L}, \Delta t)=\left\langle\psi_{L}\right| e^{-i \hat{H} \Delta t / \hbar}\left|\psi_{L}\right\rangle=1-\Delta t^{2} \frac{a^{2}}{\hbar^{2}}+\mathcal{O}\left(\Delta t^{4}\right) \tag{30}
\end{equation*}
$$

Comparing this result with that of $1(b)$, we find the variance in the energy for the state $\left|\psi_{L}\right\rangle$ to be

$$
\begin{equation*}
\left(\Delta_{\psi_{L}} E\right)^{2}=a^{2} \tag{31}
\end{equation*}
$$

(d) i. By the procedure exactly analogous to that in 3(a) and 3(b), we find the probabilities to be in the states C and R are

$$
\begin{equation*}
\operatorname{Prob}(\mathrm{R}, t)=\sin ^{4}(a t / \hbar \sqrt{2}), \quad \operatorname{Prob}(\mathrm{C}, t)=2 \sin ^{2}(a t / \hbar \sqrt{2}) \cos ^{2}(a t / \hbar \sqrt{2}) \tag{32}
\end{equation*}
$$

Checking the normalization of this result we have

$$
\begin{align*}
\operatorname{Prob}(\mathrm{L}, t) & +\operatorname{Prob}(\mathrm{C}, t)+\operatorname{Prob}(\mathrm{R}, t) \\
& =\cos ^{4}(a t / \hbar \sqrt{2})+\sin ^{4}(a t / \hbar \sqrt{2})+2 \sin ^{2}(a t / \hbar \sqrt{2}) \cos ^{2}(a t / \hbar \sqrt{2}) \\
& =\left[\cos ^{2}(a t / \hbar \sqrt{2})+\sin ^{2}(a t / \hbar \sqrt{2})\right]^{2}=1, \tag{33}
\end{align*}
$$

as expected.
ii. To compute the time dependent $\langle B\rangle$ we compute the probability weighted sum to be found at $-d, 0$, and d. Doing so we have

$$
\begin{align*}
\langle B\rangle & =-d \cdot \operatorname{Prob}(\mathrm{~L}, t)+0 \cdot \operatorname{Prob}(\mathrm{C}, t)+d \cdot \operatorname{Prob}(\mathrm{R}, t) \\
& =-\frac{d}{4}(1+\cos (a \sqrt{2} t / \hbar))^{2}+\frac{d}{4}(1-\cos (a \sqrt{2} t / \hbar))^{2} \\
& =-d \cos (a \sqrt{2} t / \hbar) \tag{34}
\end{align*}
$$

iii. By Eq.(6), we have

$$
\begin{equation*}
\langle\varphi(t)|[\hat{H}, \hat{B}]|\varphi(t)\rangle=\frac{\hbar}{i} \frac{d}{d t}\langle B\rangle=\frac{d a \sqrt{2}}{i} \sin (a \sqrt{2} t / \hbar) \tag{35}
\end{equation*}
$$

We can check this result through explicit computation. Given the Hamiltonian and the position operator, we have

$$
\begin{aligned}
{[\hat{H}, \hat{B}] } & =\left(\begin{array}{ccc}
E_{0} & -a & 0 \\
-a & E_{0} & -a \\
0 & -a & E_{0}
\end{array}\right)\left(\begin{array}{ccc}
-d & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & +d
\end{array}\right)-\left(\begin{array}{ccc}
-d & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & +d
\end{array}\right)\left(\begin{array}{ccc}
E_{0} & -a & 0 \\
-a & E_{0} & -a \\
0 & -a & E_{0}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
-d E_{0} & 0 & 0 \\
d a & 0 & -d a \\
0 & 0 & d E_{0}
\end{array}\right)-\left(\begin{array}{ccc}
-d E_{0} & d a & 0 \\
0 & 0 & 0 \\
0 & -d a & d E_{0}
\end{array}\right)
\end{aligned}
$$

$$
=d a\left(\begin{array}{ccc}
0 & -1 & 0 \tag{36}\\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right)
$$

Our time-dependent state ket in the $\left|\psi_{L}\right\rangle,\left|\psi_{C}\right\rangle,\left|\psi_{R}\right\rangle$ basis is

$$
\begin{align*}
|\varphi(t)\rangle & =\frac{e^{-i\left(E_{0}-a \sqrt{2}\right) t / \hbar}}{4}\left(\begin{array}{c}
1 \\
\sqrt{2} \\
1
\end{array}\right)+\frac{e^{-i E_{o} t / \hbar}}{2}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\frac{e^{-i\left(E_{0}+a \sqrt{2}\right) / \hbar}}{4}\left(\begin{array}{c}
1 \\
-\sqrt{2} \\
1
\end{array}\right) \\
& =\frac{e^{-i E_{0} t / \hbar}}{2}\left(\begin{array}{c}
1+\cos (a \sqrt{2} t / \hbar) \\
i \sqrt{2} \sin (a \sqrt{2} t / \hbar) \\
-1+\cos (a \sqrt{2} t / \hbar)
\end{array}\right) \tag{37}
\end{align*}
$$

Placing $[\hat{H}, \hat{B}]$ between two time-dependent state kets, we have

$$
\begin{align*}
& \langle\varphi(t)|[\hat{H}, \hat{B}]|\varphi(t)\rangle \\
& \quad=\frac{e^{i E_{0} t / \hbar}}{2}(1+\cos (a \sqrt{2} t / \hbar),-i \sqrt{2} \sin (a \sqrt{2} t / \hbar),-1+\cos (a \sqrt{2} t / \hbar)) \\
& \quad \times d a\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & -1 \\
0 & 1 & 0
\end{array}\right) \frac{e^{-i E_{0} t / \hbar}}{2}\left(\begin{array}{c}
1+\cos (a \sqrt{2} t / \hbar) \\
i \sqrt{2} \sin (a \sqrt{2} t / \hbar) \\
-1+\cos (a \sqrt{2} t / \hbar)
\end{array}\right) \\
& =\frac{d a}{4}\left(-i \sqrt{2} \sin (a \sqrt{2} t / \hbar),-2, i \sqrt{2} \sin (a \sqrt{2} t / \hbar)\left(\begin{array}{c}
1+\cos (a \sqrt{2} t / \hbar) \\
i \sqrt{2} \sin (a \sqrt{2} t / \hbar) \\
-1+\cos (a \sqrt{2} t / \hbar)
\end{array}\right)\right. \\
& =\frac{d a}{4}[-i \sqrt{2} \sin (a \sqrt{2} t / \hbar)-2 i \sqrt{2} \sin (a \sqrt{2} t / \hbar)-i \sqrt{2} \sin (a \sqrt{2} t / \hbar)] \\
& =\frac{d a \sqrt{2}}{i} \sin (a \sqrt{2} t / \hbar) \tag{38}
\end{align*}
$$

as previously calculated.

