
Mobolaji Williams Physics 143a Section Notes: March 1, 2017

Physics 143a – Workshop 5

On Quantum Mechanics in One Dimension

Week Summary
◦ Canonical Commutation Relation: For X̂ representing the position operator and P̂ representing the

momentum operator, we have the canonical commutation relation

[X̂, P̂ ] = i~. (1)

Eq.(1), together with the generalized uncertainty principle, yields what is known as the Heisenberg
uncertainty principle:1

∆φX̂∆φP̂ ≥
~
2
. (2)

◦ Time-Independent Schrödinger Equation (position space, in one-dimension): The eigenspectrum
problem for a Hamiltonian Ĥ is

Ĥ|Ej〉 = Ej |Ej〉, (3)

where Ej is the energy eigenvalue associated with the energy eigenket |Ej〉. When we consider Eq.(3)
for a particle of mass m moving in one-dimension along the real axis, we obtain

− ~2

2m

d2φj(x)

dx2
+ V (x)φj(x) = Ejφj(x), (4)

where φj(x) = 〈x|Ej〉 is the energy-eigenket wave function (i.e., the energy eigenket in the position
basis) and V (x) is the potential energy of the particle. After solving Eq.(4) for φj(x), we find that the
general solution to the time-dependent Schrödinger equation is

Ψ(x, t) =
∑
j

cje
−iEjt/~φj(x). (5)

The coefficients cj are determined from the initial condition Ψ(x, 0) and the completeness of φj(x):

c` =

∫
dxΨ(x, 0)φ`(x). (6)

◦ Free Particle Quantum Mechanics: For a free particle there is a continuous spectrum of energy eigen-
kets (given by φk(x) = eikx) and energy eigenvalues (given by Ek = ~2k2/2m) labeled by k, the wave
number of the wave function. Thus, the discrete sum in Eq.(5) is replaced with the continuous integral

Ψ(x, t) =
1√
2π

∫ ∞
−∞

dk c(k) e
i
(
kx− ~k2

2m t
)
. (7)

The coefficient2 c(k) is related to the initial wave function Ψ(x, 0) through a Fourier Transform:

Ψ(x, 0) =
1√
2π

∫ ∞
−∞

dk c(k) eikx ←→ c(k) =
1√
2π

∫ ∞
−∞

dxΨ(x, 0) e−ikx. (8)

1We note(∆φÂ)2 = 〈φ|Â2|φ〉 − 〈φ|Â|φ〉2 and |φ〉 is an arbitrary state.
2The factor of 1/

√
2π is a standard normalization which leads to symmetrical Fourier Transforms.
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1 Problems
1. Fun with Gaussians

In the following problems, take the following integral as given:∫ ∞
−∞

dx e−ax
2

=

√
π

a
. (9)

(a) Derive ∫ ∞
−∞

dx e−ax
2+bx =

√
π

a
eb

2/4a. (10)

You can take a and b to be real, but this result is also valid for imaginary a and b.

(b) Differentiate (twice) both sides of Eq.(10) with respect to b and then set b = 0 to find
∫∞
−∞ dxx2e−ax

2√
a/π.

Check this result by differentiating both sides of Eq.(10) with respect to a and setting b = 0.
(c) The teacher writes down the wave function

Ψ(x, t) =
1

(πα(t))1/4

(
Reα(t)

α(t)

)1/4

e−x
2/2α(t), (11)

with α(t) a complex number with a monotonically increasing imaginary part and decreasing real
part. Billy does a quick calculation and concludes that this wave function does not conserve
probability. Here is his calculation:

|Ψ(x, t)|2 =
1

(πα(t))1/4

(
Reα(t)

α(t)

)1/4

e−x
2/2α(t) 1

(πα∗(t))1/4

(
Reα(t)

α∗(t)

)1/4

e−x
2/2α∗(t)

=
1

(π|α(t)|)1/2

(
Reα(t)

|α(t)|

)1/2

e−x
2/|α(t)|2

∫ ∞
−∞

dx |Ψ(x, t)|2 =
1

(π|α(t)|)1/2

(
Reα(t)

|α(t)|

)1/2 ∫ ∞
−∞

dx e−x
2/|α(t)|2

=
1

(π|α(t)|)1/2

(
Reα(t)

|α(t)|

)1/2

(π|α(t)|)1/2 =

(
Reα(t)

|α(t)|

)1/2

. (12)

Billy’s argument is that since
∫∞
−∞ dx |Ψ(x, t)|2 is time dependent, the total probability to be any-

where in the system changes with time. Is Billy right?
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2. Constructing Hamiltonians
A benzene molecule is composed of six carbons arranged in a hexagonal ring:

Figure 1: Schematic of benzene molecule with carbon atoms labeled

Suppose we have a single electron which can be localized at any one of the six carbon atom positions.
The carbon atoms are identical, so the electron has the same interaction energy across all the carbon
atoms. There is also a constant non-zero transition probability for the electron to move to any other
adjacent carbon atom.

(a) In the basis of {|φj〉}where |φj〉 denotes the state of an electron localized at carbon atom j, write
the Hamiltonian of this system? (Make sure to define any parameters you introduce)

(b) Do the eigenstates of this Hamiltonian have the electron localized at single carbon atoms?

3. Free Particle Wave Function
A free particle has the initial wave function

Ψ(x, 0) = Aδ(x− x0), (13)

where A and x0 are positive real constants with dimensions of 1/
√

length and length respectively.
Write down five (sufficiently different) questions we can ask about this system. Answer three of these
questions, and outline how you would answer the remaining two.
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2 Solutions
1. (a) In order to derive the provided identity we make the change of variables u = (x − b/2a)2. We

then find au2 = ax2 − bx+ b2/4a, and the integral becomes∫ ∞
−∞

dx e−ax
2+bx =

∫ ∞
−∞

du e−au
2+b2/4a =

√
π

a
eb

2/4a. (14)

�

(b) Differentiating the LHS and RHS of Eq.(14) with respect to b twice, we find∫ ∞
−∞

dxx2 e−ax
2+bx =

√
π

a
eb

2/4a

(
b2

4a2
+

1

2a

)
. (15)

Alternatively differentiating the LHS and RHS of Eq.(14) with respect to a, we have

−
∫ ∞
−∞

dxx2 e−ax
2+bx =

√
π

a
eb

2/4a

(
− b2

4a2
− 1

2a

)
. (16)

Setting b = 0 on both sides of Eq.(15) and on both sides of Eq.(16) yields∫ ∞
−∞

dxx2 e−ax
2

=
1

2a

√
π

a
. (17)

�

(c) If
∫∞
−∞ dx |Ψ(x, t)|2 were time dependent, we would indeed find that this system does not con-

serve probability. However, Billy’s calculation is incorrect. One error is incorrectly evaluating
the integral in going from the third line of Eq.(12) to the fourth line (It should be

√
π|α(t)|2), but

there is another error which supersedes this one. In going from the first to the second line, Billy
incorrectly wrote

1

2α(t)
+

1

2α∗(t)
=

1

|α(t)|2
. [Incorrect Equation] (18)

If he had performed the calculation correctly, he would have found that the Ψ(x, t) was properly
normalized.

�

2. (a) If we were to define E0 as the interaction energy between an electron and a single carbon atom at
a vertex on the hexagon ring, and define a as proportional to the transition probability to move
from one carbon atom to an adjacent carbon atom, then we would have the Hamiltonian matrix
element

〈φj |Ĥ|φk〉 =

{
E0 if j = k

−a if j = k − 1 or j = k + 1
(19)

or, with a single line,
〈φj |Ĥ|φk〉 = E0δjk − a(δj,k+1 + δj,k−1), (20)

where j = 1, 2, · · · , 6 and j = 7 → 1 and j = 0 → 6, and k is similarly defined. Writing these
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results as a matrix yields

Ĥ =


E0 −a 0 0 0 −a
−a E0 −a 0 0 0
0 −a E0 −a 0 0
0 0 −a E0 −a 0
0 0 0 −a E0 −a
−a 0 0 0 −a E0

 . (21)

We chose−a by convention, but given the constraints of the problem, these off diagonal elements
could be a modulo a phase such that Ĥ is still Hermitian.

(b) We know the states which define the electron as being localized at a single carbon atom are de-
fined by |φj〉. But since the Hamiltonian Ĥ is not diagonal in this basis, we know that the eigen-
states of Ĥ are not |φj〉. Thus, the eigenstates of Ĥ must be linear combinations of various |φj〉
which implies the electron is not localized at a single carbon atom.

�

3. The purpose of this question is to get you to practice asking questions about physical systems. In most
problems in this class you’re given a physical system and are tasked with answering questions about
said system, but the purpose of this question is to get you to practice asking questions about physical
systems. Whenever you study a physical system using quantum mechanics, or anything else you’ve
learned, it will be your ability to clearly formulate many possible questions—as much if not more than
your ability to answer them—which will determine how much information you can obtain from the
system.

�

We can ask a number of questions about the system defined by the given wave function.

(i) Is this system consistent with quantum mechanics?
(ii) What is A such that the state is normalized?
(iii) What is the wave function Ψ(x, t)?
(iv) What are 〈x〉 and 〈p〉 for this state?
(v) What is the expression of this state in the momentum basis?

(i) This is arguably the most important question, and the answer is yes, but we must be careful. Al-
though the given Ψ(x, 0) is fun to play around with, it is not the most physical state given that it
precisely specifies the position of the particle and consequently has an infinite uncertainty in momen-
tum. It would appear that the fact that Ψ(x, 0) precisely specifies the position would lead to a violation
of the Heisenberg uncertainty principle, but in fact if we were to take appropriate limiting expressions
(by taking Ψ(x, 0) = lima→0Ae

−x2/2a2/
√

2πa2) then we would find that although the momentum un-
certainty of Ψ(x, 0) diverges the product of the momentum and position uncertainty is finite.
(ii) To normalize the state we use the fact that δ(x) · δ(x) = δ(x) to find∫ ∞

−∞
dx |Ψ(x, t)|2 = |A|2

∫ ∞
−∞

dx δ(x− x0) = |A|2 = 1. (22)

Therefore in order for the state to be normalized A must be a complex phase, i.e., A = eiφ.
(iii) We can compute the wave function at later times t, by Eq.(8) and Eq.(7). Computing c(k) first we
find

c(k) =
A√
2π

∫ ∞
−∞

dx δ(x− x0) e−ikx =
A√
2π
e−ikx0 . (23)
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And then computing the time-dependent wave function we have

Ψ(x, t) =
A

2π

∫ ∞
−∞

dk eik(x−x0)e−i~k
2t/2m = A

√
m

2πi~t
exp

[ m

2i~t
(x− x0)2

]
. (24)

We note that Eq.(24) would not be normalized, for any A, if we take the x domain of the particle to be
the entire real axis. This is reflection of the fact that this
(iv) The average of x is simply x0 by the definition of the Dirac delta function. We note this average is
only defined for t = 0. The average of p is 0 as we can see from the following calculation:

〈p〉 = |A|2
∫ ∞
−∞

dx δ(x− x0)
~
i

d

dx
δ(x− x0) = −|A|2

∫ ∞
−∞

dx
~
i

d

dx

[
δ(x− x0)

]
δ(x− x0). (25)

Since a quantity is found to be equal to its negative the quantity itself must be zero.
(v) In (iii), we already partly answered this question. In the momentum basis the particle wave func-
tion, at t = 0, is

Φ(p, 0) =

∫ ∞
−∞

dx√
2π~

e−ipx0/~Ψ(x, 0) =
1√
2π~

e−ipx0 . (26)

�
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