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Physics 143a – Workshop 7

Quantum Mechanical Harmonic Oscillator

Week Summary
◦ Raising and Lowering Operators: When modeling harmonic oscillator systems it is useful to write

the system’s Hamiltonian in terms of raising and lowering operators. Namely, suppose we have a
Hamiltonian given by

Ĥ =
1

2m
P̂ 2 +

1

2
mω2X̂2, (1)

where P̂ is the momentum operator, X̂ is the position operator, m is the mass of the particle within
the well, and ω is the well’s angular frequency. We can then define the raising and lowering operators
â† and â by

â† =

√
mω

2~

(
X̂ − i

mω
P̂

)
, â =

√
mω

2~

(
X̂ +

i

mω
P̂

)
, (2)

such that the Hamiltonian now becomes

Ĥ = ~ω
(
â†â+

1

2

)
. (3)

In deriving Eq.(3), we used the Heisenberg Uncertainty principle and Eq.(2), to establish and apply
the identity

[â, â†] = 1. (4)

Labeling the system’s energy eigenkets as |n〉 (where n = 0, 1, . . .), the action of the raising and lower-
ing operators on the eigenkets is

â|n〉 =
√
n|n− 1〉 , â†|n〉 =

√
n+ 1|n+ 1〉. (5)

Using Eq.(5) in Eq.(3), we find that the energy eigenvalues of the harmonic oscillator are

En = ~ω
(
n+

1

2

)
. (6)

◦ Wave Function Solutions: The Time-Indepdent Schrödinger equation for the Harmonic Oscillator in
the position basis is (

− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψn(x) = Enψn(x). (7)

The energy eigenvalues are given by Eq.(6), and the eigenfunction solutions are

ψn(x) =
(mω
π~

)1/4 1√
2nn!

Hn

(
x

√
mω

~

)
e−mωx

2/2~ (8)

where Hn(x) is a Hermite Polynomial given by (among other formulas) the generating function

Hn(x) = (−1)nex
2 dn

dxn
e−x

2/2. (9)
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1 Problems
1. Coherent (i.e., quasi-classical) states of the harmonic oscillator

Certain linear combinations of harmonic oscillator states (known as ’coherent states’) satisfy ∆x∆p =
~/2 and thus minimize the uncertainty limit. These states are also known as ’quasi-classical’ because
they have position and momentum expectation values which match the classical behavior of an oscil-
lator.
These coherent states are eigenfunctions of the lowering operator:

â|α〉 = α|α〉, (10)

where we take |α〉 to be a normalized state and α ∈ C.

(a) Like any other state ket, a coherent state can be expanded in terms of energy eigenstates:

|α〉 =

∞∑
n=0

cn|n〉. (11)

Using Eq.(10) determine the expansion coefficients cn (for n ≥ 1) in terms of c0.
(b) Determine c0 by normalizing |α〉.
(c) Say we have a state |ψ(0)〉 = |α〉 at time t = 0. Using the fact that an overall phase factor does

not change the nature of the state, what is the state |ψ(t)〉? Write the result in terms of |α(t)〉 ≡
|αe−iωt〉. (Hint: You would need to remember how to transform a time-independent state into a
time-dependent one.)

(d) Say we have a classical harmonic oscillator with amplitude X0, mass m, frequency ω, and phase
φ. What are the classical oscillator’s position and momentum as functions of time?

(e) Compute 〈α(t)|X̂|α(t)〉 and 〈α(t)|P̂ |α(t)〉 and simplify as much as possible. (Hint: Recall that â† is
the hermitian conjugate of â.)

(f) What is the correspondence between the results in (d) and (e)?
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2 Solutions
1. (a) Beginning from the expansion of the coherent state in terms of energy eigenstates and acting on

it with the lowering operator, we find

α|α〉 = â|α〉
∞∑
n=0

cnα|n〉 =

∞∑
n=0

cnâ|n〉

∞∑
n′=1

cn′−1α|n′ − 1〉 =

∞∑
n=0

cn
√
n|n− 1〉

=

∞∑
n=1

cn
√
n|n− 1〉, (12)

where we made the change of integration variables n = n′ − 1 in the third line. From the final
line, we can conclude that cn = αcn−1/

√
n. Iterating this result gives us

cn =
αcn−1√

n
=

α2cn−2√
n(n− 1)

= · · · = αnc0√
n!
, (13)

which determines the coherent state up to an overall normalization c0.
�

(b) Requiring the previously found coherent state to be normalized, we have

1 = 〈α|α〉

=

∞∑
`,n=0

c∗`cn〈`|n〉

=

∞∑
`,n=0

c∗0α
∗ `

√
`!

c0α
n

√
n!
〈`|n〉

=

∞∑
n=0

|α|2n

n!
|c0|2

= e|α|
2

|c0|2. (14)

Thus we can infer that c0 = e−|α|
2/2.

�

(c) To find the time-dependent coherent state, we apply the time-evolution operator to the original
coherent state:

e−iĤt/~|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
e−iĤt/~|n〉

= e−|α|
2/2

∞∑
n=0

αn√
n!
e−iω(n+1/2)t|n〉

= e−iωt/2e−|α|
2/2

∞∑
n=0

(αe−iωt)n√
n!

= e−iωt/2|αe−iωt〉. (15)
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Given that the constant phase factor in Eq.(15) is not physically significant, we can conclude that
time evolving the coherent state appends an exponential phase to the coherent state parameter
α:

e−iĤt/~|α〉 → |α(t)〉, (16)

where α(t) = αe−iωt.
�

(d) For a classical oscillator with amplitude X0, mass m, frequency ω, and phase φ, the position and
momentum solutions to the equations of motion are

X(t) = X0 cos(ωt+ φ), P (t) = −mωX0 sin(ωt+ φ). (17)

�

(e) The complex exponential form of α(t) is

α(t) = αe−iωt = |α|e−iωt+φα , (18)

where tanφα = Im(α)/Re(α). Thus, computing the expectation value of the position and mo-
mentum operators for a time-dependent coherent state, we find

〈α(t)|X̂|α(t)〉 =

√
~

2mω
〈α|â† + â|α〉

=

√
~

2mω
(α∗(t) + α(t)) = |α|

√
2~
mω

cos(ωt− φα), (19)

〈α(t)|P̂ |α(t)〉 =

√
~mω

2

1

i
〈α|â− â†|α〉

=

√
~mω

2

1

i
(α(t)− α(t)∗) = −|α|

√
2~mω sin(ωt− φα). (20)

�

(f) As is true to its name, the quasi-classical state |α(t)〉 reproduces the time-dependent classical
expectation values. Comparing the results of (d) and (e), we find the correspondence between
the two results is given by

|α|
√

2~
mω
→ X0 and φα → φ. (21)

Thus it is possible to go from coherent state expectation values to the corresponding physical
results computed in the classical theory.

�

4



30 min - Practice Exam
1. (Stern-Gerlach Gravitino)

The gravitino, the hypothetical supersymmetric partner of the graviton (which is itself the hypothetical
’force carrier’ of gravity), is a spin-3/2 fermion.
Assume the gravitino has a magnetic moment which is proportional to its spin. We set up a Stern-
Gerlach experiment where a beam of gravitinos is initially in a state where there is equal probability
to be in any of its spin-ẑ states. We then send the beam through a finite region containing a magnetic
field pointing in the ẑ-direction. Draw a schematic of this experiment showing the beam before it
enters and after it exits the field.
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2. (Photon Polarization)
The matrix representation for a photon propagating along the z-axis of a quartz crystal (using the
linear polarization states |+〉 and |−〉 as a basis) is given by

Ĥ =

(
0 −iE0

iE0 0

)
, [In the |+〉, |−〉 basis]. (22)

(a) What are the eigenstates (in the |+〉, |−〉 basis) and eigenvalues of the Hamiltonian?
(b) A photon enters the crystal in the state |ψ(0)〉 = |+〉. What is the probability to find the photon in

this initial state at time t?
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3. Lennard-Jones potential
The potential energy of two atoms separated by a distance r is often well represented by the Lennard-
Jones potential:

V (r) = ε

[(σ
r

)12
− 2

(σ
r

)6]
, (23)

where ε and σ are parameters with the units of energy and length, respectively.

(a) Calculate the position r0 of the potential energy minimum, and show (by determining V0 and
mω2) that near r = r0

V (r) ' 1

2
mω2(r − r0)2 + V0. (24)

(b) We have a quantum particle of mass m located near r = r0. Write the energy eigenvalues of this
system in terms of the parameters of Eq.(23).
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4. (Model of a diatomic molecule)
Assuming g > 0, we can very crudely model the potential felt by an electron of a diatomic molecule as

V (x) = −~2g
2m

[
δ(x+ `) + δ(x− `)

]
. (25)

The nuclear axis is taken to be the x axis, and the two nuclei are located at x = +` and x = −`.

(a) For this potential, write the boundary conditions a solution of the Schrödinger equation must
satisfy.

(b) Qualitatively sketch |ψ(x)|2 (whereψ(x) is a bound state wave function solution) and V (x) labeling
each plot and important positions along the x-axis.
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3 Practice Exam Answers
1. Fig. 1

Figure 1: Stern-Gerlach for Gravitino: |φ〉 = 1
2 |

3
2 ,

3
2 〉 + 1

2 |
3
2 ,

2
2 〉 + 1

2 |
3
2 ,−

1
2 〉 + 1

2 |
3
2 ,−

3
2 〉. Plot assumes the

gravitino magnetic moment is the negative of the spin, and thus negative spins are pushed in the direction
of increasing field. Actually, modern theories of the gravitino do not predict it to have a magnetic moment,
although some models do have it interacting with the electromagnetic field.

2. (a)

|E1〉 =
1√
2

(
1
i

)
, E1 = E0 (26)

|E2〉 =
1√
2

(
1
−i

)
, E1 = −E0 (27)

(b)
Prob(+→ + transition in time t) = |〈+|ψ(t)〉|2 = cos2(E0t/~). (28)

3. We find r0 = σ is the point where the potential is at a local minimum. The potential can then be written
as

(a)
V (r) ' 36ε

σ2
(r − σ)2 − ε. (29)

(b)

En = ~
√

72ε

mσ2

(
n+

1

2

)
(30)

4. (a) The wave function must satisfy continuity across all potential boundaries and discontinuities in
its derivative as defined by the potential.

lim
x→`+

ψ(x) = lim
x→`−

ψ(x),

(
dψ(x)

dx

)
`+
−
(
dψ(x)

dx

)
`−

= −gψ(`) (31)

lim
x→−`+

ψ(x) = lim
x→−`−

ψ(x),

(
dψ(x)

dx

)
−`+
−
(
dψ(x)

dx

)
−`−

= −gψ(−`). (32)

If we include the additional requirement that the particle is a bound state then we requireψ(x)→ 0
as x→ ±∞.
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(b) Fig. 2

Figure 2: Potential and wave function magnitude: The potential is shown in green and the wave-function
modulus squared is in black.
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