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Week Summary
◦ Coherent State: Coherent linear superpositions of harmonic oscillator eigenstates (known simply as

”coherent states”) are special states which minimize the Heisenberg uncertainty relation for harmonic
oscillators. They are eigenstates of the lowering operator, i.e.,

â|α〉 = α|α〉, (1)

and they are written in terms of energy eigenstates |n〉 as

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2)

For the Hamiltonian
Ĥ =

1

2m
P̂ 2 +

1

2
mω2X̂2, (3)

coherent states satisfy

〈α|X̂|α〉 =

√
2~
mω

Reα (4)

〈α|P̂ |α〉 =
√

2~mω Imα (5)

〈α|Ĥ|α〉 = ~ω
(
|α|2 +

1

2

)
. (6)

Computing the uncertainty in the Hamiltonian Ĥ for a coherent state, we find ∆αĤ = ~ω|α|. Given
Eq.(6) this uncertainty implies

∆αĤ

〈H〉
∼ 1

|α|
→ 0 if |α| → ∞. (7)

Because the existence of fundamental uncertainty in a measurement is a quantum mechanical at-
tribute, the result Eq.(7) allows us to interpret the |α| → ∞ limit of the coherent state as an approach
toward classical behavior.
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1 Problems
1. Hellmann-Feynman Theorem

(a) Let a Hamiltonian Ĥ depend on a parameter λ: Ĥ = Ĥ(λ). Let E(λ) be a nondegenerate eigen-
value and |ϕ(λ)〉 be the corresponding normalized eigenvector 〈ϕ(λ)|ϕ(λ)〉 = 1:

Ĥ(λ)|ϕ(λ)〉 = E(λ)|ϕ(λ)〉. (8)

Prove the Feynman-Hellman theorem1:

∂E

∂λ
=

〈
ϕ(λ)|∂Ĥ

∂λ
|ϕ(λ)

〉
. (9)

(b) The Hamiltonian for a harmonic oscillator is

Ĥ =
1

2m
P̂ 2 +

1

2
mω2X̂2. (10)

i. Using Eq.(9), compute
〈n|X̂2|n〉, (11)

(where |n〉 is an energy eigenstate of the harmonic oscillator.
ii. Using the result from i. and Eq.(9), compute

〈n|P̂ 2|n〉. (12)

iii. Noting that 〈n|X̂|n〉 = 0 and 〈n|P̂ |n〉 = 0, compute the uncertainty product ∆X̂∆P̂ for
energy eigenstates of the harmonic oscillator.

iv. If a classical system corresponds to one which is far from the uncertainty limit, what condition
defines whether we consider our harmonic oscillator system to be classical?

1Hellman proved the theorem in 1937 [1], a year before he was executed in the Great Purge. Feynman proved this theorem as part
of his undergraduate thesis at MIT [2] .
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2 Solutions
1. (a) To prove the result we begin with the definition of the eigenvalue E(λ) for an eigenstate |ϕ(λ)〉:

E(λ) = 〈ϕ(λ)|Ĥ(λ)|ϕ(λ)〉. (13)

Differentiating this result with respect to λ, we find

∂E

∂λ
=

∂

∂λ

[
〈ϕ(λ)|Ĥ(λ)|ϕ(λ)〉

]
=
[ ∂
∂λ
〈ϕ(λ)|

]
Ĥ(λ)|ϕ(λ)〉+

〈
ϕ(λ)|∂Ĥ

∂λ
|ϕ(λ)

〉
+ 〈ϕ(λ)|Ĥ(λ)

[ ∂
∂λ
|ϕ(λ)〉

]
= E(λ)

[ ∂
∂λ
〈ϕ(λ)|

]
|ϕ(λ)〉+

〈
ϕ(λ)|∂Ĥ

∂λ
|ϕ(λ)

〉
+ E(λ)〈ϕ(λ)|

[ ∂
∂λ
|ϕ(λ)〉

]
= E(λ)

∂

∂λ

[
〈ϕ(λ)|ϕ(λ)〉

]
+

〈
ϕ(λ)|∂Ĥ

∂λ
|ϕ(λ)

〉

=

〈
ϕ(λ)|∂Ĥ

∂λ
|ϕ(λ)

〉
, (14)

where we used the fact that the state is normalized in the final line. �

(b) i. For the harmonic oscillator, we have the eigenvalues and Hamiltonian

En = ~ω
(
n+

1

2

)
, Ĥ =

1

2m
P̂ 2 +

1

2
mω2X̂2. (15)

Taking ω to be the relevant parameter in the Feynman-Hellmann theorem, we have

∂En
∂ω

= 〈n|∂Ĥ
∂ω
|n〉

~
(
n+

1

2

)
= mω〈n|X̂2|n〉, (16)

thus we find
〈n|X̂2|n〉 =

~
mω

(
n+

1

2

)
. (17)

�
ii. Taking m to be the relevant parameter in the Feynman-Hellmann theorem, we have

∂En
∂m

= 〈n|∂Ĥ
∂m
|n〉

0 = − 1

2m2
〈n|P̂ 2|n〉+

1

2
ω2〈n|X̂2|n〉. (18)

Therefore the expectation value of the momentum-squared operator is

〈n|P̂ 2|n〉 = m2ω2〈n|X̂2|n〉 = ~mω
(
n+

1

2

)
. (19)

�
iii. Given that 〈n|X̂|n〉 = 0 and 〈n|P̂ |n〉 = 0, we find that the uncertainty limit for a harmonic

3



oscillator eigenstate is

∆X̂∆P̂ =

√
~
mω

(
n+

1

2

)√
~mω

(
n+

1

2

)
= ~

(
n+

1

2

)
. (20)

iv. The uncertainty limit is ∆X̂∆P̂ = ~/2. Thus the result Eq.(20) would be far from the uncer-
tainty limit (and would approximate classical behavior) if n� 1.

�
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