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Two-Particle Systems and Schrödinger equation in R3

Week Summary

◦ Separable Hamiltonians: If we have a Hamiltonian Ĥ which can be written as

Ĥ = Ĥ1 + Ĥ2, (1)

where the degrees of freedom defining Ĥ1 do not appear in Ĥ2 and the degrees of freedom defining
Ĥ2 do not appear in Ĥ1, then the energy eigenkets and eigenvalues of the system defined by Eq.(1)
are, respectively,

|n1, n2,m1,m2, . . .〉 = |n1,m1, . . .〉 ⊗ |n2,m2, . . .〉, En1,n2,m1,m2,... = En1,m1,... + En2,m2,..., (2)

wheren1,m1, . . . are the quantum numbers defining the eigenstates and eigenvalues of Ĥ1 andn2,m2, . . .

are the quantum numbers defining the eigenstates and eigenvalues of Ĥ2.

◦ Schrödinger equation in R3: The time-independent Schrödinger equation in R3, for a particle of mass
m in a potential V , can be written generally as(

− ~2

2m
∇2 + V (r)

)
φ(r) = Eφ(r), (3)

where∇ is the gradient operator, and φ(r) and E are the wave function and energy eigenvalues of the
relevant system with quantum numbers hidden. If our potential V (r) is spherically symmetric (i.e., it
is a function only of r), then Eq.(3) reduces to[

− ~2

2m

(
∂2

∂r2
+

2

r

∂

∂r

)
+

L̂
2

2mr2
+ V (r)

]
φ(r) = Eφ(r), (4)

where L̂
2

is the conserved angular-momentum-squared operator.
If the potential V (r) is separable along the x, y, and z directions then Eq.(3) reduces to

Ĥ = Ĥx + Ĥy + Ĥz, (5)

where Ĥq = − ~2

2m
∂2

∂q2 + V (q).

◦ Conservation and Commutation: By Hamilton’s equation of motion, the time evolution of an operator
Â is defined by

d

dt
〈A〉 =

〈
∂Â

∂t

〉
+
i

~

〈
[Ĥ, Â]

〉
. (6)

Thus, an operator Â without an explicit time dependence and which also commutes with the hamil-
tonian is conserved.
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1 Problems
1. Particle in a box

Peter asks Cody a question about a quantum particle in a box. He states that the particle has mass m
and potential energy

V (x) =

{
0 for 0 < x < ax, 0 < y < ay , and 0 < z < az

∞ otherwise
, (7)

where ax, ay , and az are the confines of the box. He then asks Cody what are the energy eigenfunctions
and eigenvalues of this system. Using the one-dimensional problem as an analogy, Cody answers that
the energy eigenfunctions and eigenvalues are, respectively,

ψnx,ny,nz
(x, y, z) =

√
8

axayaz
sin

[
π

(
nx
ax
x+

ny
ay
y +

nz
az
z

)]
, Enx,ny,nz

=
~2π2

2m

(
nx
ax

+
ny
ay

+
nz
az

)2

,

(8)
where nx, ny , and nz are positive integers.

(a) Is Cody right? If not, then what are the correct energy eigenfunctions and energy eigenvalues?
(b) Peter is looking for more questions he can ask about this particle in a box system. What other

questions could he ask?

2. Degeneracy of Central Potentials
In a previous assignment we found that if the operators Â, B̂, and Ĉ obeyed the commutation relations

[Â, B̂] = 0, [Â, Ĉ] = 0, [B̂, Ĉ] 6= 0, (9)

then Â must have degenerate eigenvalues. For a particle in a central-force potential, the Hamiltonian
is

Ĥ =
p̂2

2µ
+ V (|̂r|), (10)

where µ is the reduced mass of the system and r is the radial vector. For such potentials, the z angular
momentum, y angular momentum, and x angular momentum are all conserved. Using this fact, the
properties of angular momentum operators, and Eq.(9), prove that Hamiltonians of the form Eq.(10)
always have degenerate energy eigenvalues.

3. Quantum Oscillator
Say we have a coupled oscillator defined by the Hamiltonian

Ĥ =
p̂21
2m

+
p̂22
2m

+
1

2
kx21 +

1

2
kx22 +

1

2
k(x2 − x1)2. (11)

From classical mechanics, we know we can express this Hamiltonian in the normal mode form

Ĥ =
p̂2q1
4m

+
p̂2q2
4m

+ kq21 + 3kq22 , (12)

where q1 = 1
2 (x1 + x2) and q2 = 1

2 (x1 − x2), and pq1 and pq2 are the conjugate momenta of q1 and q2
respectively.

(a) What are the energy eigenvalues of this coupled oscillator system? (Hint: The energy eigenvalues
are defined by two quantum numbers.)

(b) Write the ground state wave function for this system in terms of x1 and x2.
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2 Solutions
(a) i. Cody is not correct. Since the Hamiltonian for this system is separable, the energy eigenfunc-

tions are a product of the energy eigenfunctions for each independent direction:

ψnx,ny,nz
(x, y, z) =

√
8

axayaz
sin

(
nxπ

ax
x

)
sin

(
nyπ

ay
y

)
sin

(
nzπ

az
z

)
. (13)

And the energy eigenvalues are a sum of the energy eigenvalues for each independent direc-
tion:

Enx,ny,nz
=

~2π2

2m

[(
nx
ax

)2

+

(
ny
ay

)2

+

(
nz
az

)2
]
. (14)

�

ii. By analogy to the one-dimensional case, we can ask a number of questions about this system:
– What is the uncertainty in position for each coordinate direction?
– What is the uncertainty in momentum for each coordinate direction?
– What is the time-dependent wave function presuming our system started

with the factorizable wave function Ψ(x, y, z; t = 0) = f(x)g(y)h(z)?
The final question is answered simply using the expansion of an arbitrary wave function in
terms of the energy eigenfunctions. With this expansion we have

Ψ(x, y, z, t) =
∑

nx,ny,nz

cnx
cny

cnz
e−iEnx,ny,nz t/~ψnx,ny,nz

(x, y, z), (15)

where the coefficients cnx
, cny

, and cnz
are given by

cnx
=

√
2

ax

∫ ax

0

dx sin

(
nxπ

ax
x

)
f(x), (16)

cny
=

√
2

ay

∫ ay

0

dy sin

(
nyπ

ay
y

)
g(y), (17)

cnz
=

√
2

az

∫ az

0

dz sin

(
nzπ

az
z

)
h(z). (18)

�

(b) For a particle in a central force potential the Hamiltonian

Ĥ =
p̂2

2µ
+ V (|̂r|), (19)

conserves angular momentum. Thus, by the Heisenberg equations of motion for an operator,
we have [Ĥ, L̂x] = [Ĥ, L̂y] = [Ĥ, L̂z] = 0. But we know that angular momentum operators
defined along different directions do not commute. Namely, [L̂x, L̂y] 6= 0. Thus, given that Ĥ
commutes with two operators which do not commute with each other, we can conclude that Ĥ
has a degenerate spectrum of eigenvalues.
Choosing the z direction as the reference direction for our central force motion, this degenerate
spectrum is the very same spectrum which defines the eigenstates of the L̂

2
and L̂z operators.

Specifically, the eigenstate |`,m〉 satisfying L̂
2
|`,m〉 = ~2`(` + 1)|`,m〉 and L̂z|`,m〉 = ~m|`,m〉

are degenerate eigenstates of Ĥ .
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(c) We can re-express Eq.(12) in a more transparent form by defining m′ = 2m, ω1 =
√
k/m, ω2 =√

3k/m. Doing so, gives us the new Hamiltonian

Ĥ =
p̂2q1
2m′

+
1

2
m′ω2

1q
2
1 +

p̂2q2
2m′

+
1

2
m′ω2

2q
2
2 ≡ Ĥq1 + Ĥq2 , (20)

where we defined the Hamiltonians containing q1 and q2 variables as Ĥq1 and Ĥq2 , respectively.
Having separated our Hamiltonian system, we can thus infer that the eigenvalues of the system
are

Enq1 ,nq2
= ~ω1

(
nq1 +

1

2

)
+ ~ω2

(
nq2 +

1

2

)
= ~

√
k

m

[
nq1 +

1

2
+
√

3

(
nq2 +

1

2

)]
. (21)

Addendum: Contained in Eq.(21) is a hint of one of the problems in defining a quantum field the-
ory. For a system of N coupled oscillators there are N independently oscillating modes. Quan-
tizing such anN oscillator system, we would findN independent Hamiltonians, and thus a sum
of N energy eigenvalues for each mode. In analogy to the first line of Eq.(21), the energy of the
system would then be

E =

N∑
k=1

~ωk

(
nqk +

1

2

)
. (22)

The coupled oscillator system is of particular import to classical mechanics because taking N →
∞ in the system produces a string which experiences longitudinal waves along its axis and is thus
governed by a wave equation. However, if we were to try to study the quantum theory of this wave
equation (which is really the quantum theory of the field for which the wave equation models
the dynamics), then taking N →∞ in Eq.(22) presents some problems. Namely, considering the
second term in Eq.(22) we find

Ground state energy = lim
N→∞

N∑
k=1

~ωk

2
=∞, (23)

suggesting that a quantum mechanical continuous string has infinite energy1 . This is one exam-
ple of the infamous divergences which plague quantum field theory and which necessitated the
development of renormalization theory to obtain sensible physical results.

(d) The ground state wave function for our coupled oscillator system is a product of the ground state
wave functions for each normal mode of the system. Thus, this ground state wave function is

ψ0,0(q1, q2) =

(
m′ω1

π~

)1/4

e−m
′ω1/2~q21

(
m′ω2

π~

)1/4

e−m
′ω2/2~q22

=

(
4m2ω1ω2

(π~)2

)1/4

exp
[
−m

4~
(
ω1(x1 + x2)2 + ω2(x1 − x2)2

)]
, (24)

where we used m′ = 2m and q1,2 = (x1 ± x2)/2 in the final line.
�

1We know that ωk doesn’t go to zero in just the right way to obtain a finite result, because we label our modes so that higher-order
modes have higher frequencies of oscillation.

4


	Problems
	Solutions

