
Physics S-10 Section Notes: July 20, 2016

Section #5 Problems: Week of July 20

1. Spinning and Falling 1

A mass m is free to slide on a frictionless table and is connected, via a string of length ` that passes
through a hole in the table, to a mass M that hangs below (see Fig. 1). Assume that M moves in a
vertical line only, and assume that the string always remains taut.

Figure 1: Figue from [1]. The variable r denotes the length of string on the table. The variable y denotes the
length of string hanging through the hole. The total string has length `.

(a) Write down the Lagrangian in terms of the relevant kinematic variables in the figure. (Note that
the mass on the table has both a radial and atangential velocity).

(b) (Consider this part only if you finish part (a)): What is the constraint for this system? Write it as
h = 0 for a function h you must determine. .

Solution:
(a) The kinematic variables in the system are y which defines vertical motion, and r and θwhich define
motion within the plane of the table. We want to find the Lagrangian which is defined as

L = T − V = TM + Tm − V, (1)

where TM is the kinetic energy of mass M , Tm is the kinetic energy of mass m, and V is the potential
energy of the system.
The potential energy is the easiest to determine so we compute it first. Gravity is the only relevant
external force in this system and it only directly acts on M , so the potential energy must be the grav-
itational potential energy of M . Given that y increases downward (according to the figure), and that
gravitational potential energy must decrease the closer we get to earth’s surface we have

V = −Mgy (2)

where we defined zero potential energy at the top of the table.
1Problem is from [1]
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The kinetic energy comes in two contributions: the kinetic energy associated with mass M and the
kinetic energy associated with mass m. The mass M moves only in a straight line so its kinetic energy
is straight forward:

TM =
1

2
Mv2y =

1

2
Mẏ2. (3)

The mass m moves in a plane defined by the polar coordinates r and θ. The radial velocity is vr = ṙ

and the tangential velocity is vθ = rθ̇. The kinetic energy of m is then

Tm =
1

2
m(v2r + v2θ) =

1

2
m(ṙ2 + r2θ̇2). (4)

We could also reproduce this result by defining the vector ~r = (r cos θ, r sin θ), computing ~v = d~r/dt,
and then Tm = 1

2m~v
2.

In all then, the Lagrangian of our system is

L =
1

2
Mẏ2 +

1

2
m(ṙ2 + r2θ̇2) +Mgy (5)

�

(b) In this system the total length of the string is fixed. Therefore, we have y + r = ` and writing this
as h = 0 we have

h(r, y) = `− r − y = 0. (6)

�
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2. Walking on a Train-Part I2

A train of length L (measured when it is at rest) and speed v = 3c/5 approaches a tunnel of length
L. How long does it take (in the ground frame) for the train to pass completely through the tunnel
assuming we start the clock when the front end enters the tunnel and we stop the clock when the back
end exits the tunnel?
Solution:
We want to determine the time it takes a train to pass completely through a tunnel assuming we start
the clock when the front end enters the tunnel and we stop the clock when the back end exits the
tunnel. First the tunnel is stationary, so it’s length as measured by us on the ground is simply L:

Ltunnel gr. = L (7)

The train has a rest length L and it is moving at a velocity 3c/5. Thus, from the ground frame, the
length of the train is contracted to

Ltrain gr. =
L

γ
, (8)

where

γ =
1√

1− v2/c2
=

1√
1− (3/5)2

=
1√

16/25
=

5

4
. (9)

The total distance Ltot covered by the back of the train during the time it takes the train to pass com-
pletely through the tunnel is a sum of the length of the tunnel and the length of the train, as measured
from the ground frame. Thus

Ltot = Ltrain gr. + Ltunnel gr. =
L

γ
+ L = L

(
1 +

1

γ

)
. (10)

The time it takes the train to pass completely through the tunnel, is this length divided by the speed
of the train. Thus we have

T =
L

v

(
1 +

1

γ

)
=

5L

3c

(
1 +

4

5

)
=

3L

c
. (11)

�

2Problem is from [1]
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3. Equation Diagramming
Each symbol used in an equation (particularly seemingly complicated ones) has meaning, and under-
standing the equation involves not only understanding how to apply it but also what each symbol
means. We can develop this understanding by diagramming equations.

Figure 2: Equation Diagram for Newton’s Second Law

Using the equation diagram in Fig. 2 as an example, create analogous equation diagrams for the Euler-
Lagrange Equations and Hamilton’s Equations. Be as general as possible in the form of the equation
(i.e., don’t use a position variable when you should use a generalized coordinate variable) and be
precise in how you write the equation and how you identify/describe the symbols in the equation.
Solution:
Solutions will vary. Possible ones are on the next page.
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Figure 3: Equation Diagram for Euler-Lagrange Equations

Figure 4: Equation Diagram for Hamilton’s Equations
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4. From Here to There3

A train of length L (measured when it is at rest) travels past you at speed v. A person on the train
stands at the front, next to a clock that reads zero. At this moment in time (as measured by you), a
clock ta the back of the train reads Lv/c2. Evaluate whether the following statement can be true or not
true. Explain either case you decide on.

”The person at the front of the train can leave the front right after the clock there reads zero,
and then turn to the back and get there right before the clock there reads Lv/c2. You (on the
ground) will therefore see the person simultaneously at both the front and the back of the
train when the clocks there read zero and Lv/c2, respectively.”

Solution:
The solution to this problem rests on the fact that massive objects cannot travel faster than the speed
of light and the “Rear Clock Ahead” effect.
Whenever a long object of lengthL is moving with a velocity v (in a direction parallel to its length) then
the end which is farthest from the direction of motion (i.e., the rear end) is ahead in time by Lv/c2 with
respect to the time the end closest to the direction of motion (i.e., the front end). This was discussed
in lecture and is called the “Rear Clock Ahead”.
You on the ground see the back end of the train at a time Lv/c2 into the future of the front end of the
train. In order for you (on the ground) to see the person simultaneously at both the front and the back
of the train, the person (in the train) needs to cover a distance L (the entire length of the train in his
frame) in a time Lv/c2. Thus the person needs to move a distance ∆x = L in a time ∆t = Lv/c2, which
implies he must move with a speed

v =
∆x

∆t
=

L

Lv/c2
=
c

v
· c > 0. (12)

The person cannot move at a speed faster than c, so this situation is not possible. �

3Problem is from [1]
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5. What is the Question?
Consider the physical situation depicted in the figure below. A rock is thrown at a speed v0 and at an
angle θ (from the horizontal) from the peak of a hill which slopes downward at an angle φ.

Figure 5: Projectile Motion

List three physics-related questions you can ask about this physical situation. Answer two of those
questions, and write an outline of how you may answer the last question. Try to consider as many
questions as possible.
Solution:
The purpose of this problem is to get you to practice asking questions about physical systems and
formulating these questions in a way that they are answerable using the techniques you’ve learned.
This is an open ended problem. Some of the questions one could ask are:

• How far along the decline does the rock travel?
• Assuming φ is fixed, what angle θ maximizes the total distance along the decline the rock travels?
• What is the velocity of the rock at the highest point in its trajectory?
• How far (vertically) below its starting point does the rock land?
• What is the potential energy of the rock at the lowest point in its trajectory?
• What is the total time it takes the rock to complete its trajectory?
• What angle maximizes the area under the curve of the trajectory?
• How would these results change if φ < 0 (i.e., there was a decline instead of an incline).

We will answer the first two, namely we will determine the total distance along the decline the ball
travels and determine the angle θ which maximizes this distance given a fixed φ.
For this problem the kinematical equations for x and y have their standard form

x(t) = v0 cos θty(t) = v0 sin θt− 1

2
gt2. (13)

If we take ` to be the total distance the object travels along the decline, then by geometry it has traveled
a total horizontal distance ` cosφ and fallen a distance ` sinφ from its starting point. Assuming it
completed its trajectory in a time tf , we have the equations

x(tf ) = ` cosφ = v0 cos θtf (14)
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y(tf ) = −` sinφ = v0 sin θtf −
1

2
gt2f (15)

Solving Eq.(14) for tf , we find

tf =
` cosφ

v0 cos θ
, (16)

and plugging this result back into Eq.(15) gives us

− ` sinφ = ` cosφ tan θ − g`2 cos2 φ

2v20 cos2 θ
. (17)

Dividing by ` to eliminate the extraneous ` = 0 solution we find

− sinφ = cosφ tan θ − g` cos2 φ

2v20 cos2 θ
(18)

which when solved for ` gives

` =
2v20
g

cos2 θ (tanφ+ tan θ)

cosφ
, (19)

which is the total distance the rock travels along the decline. We note that, as we expect, φ = 0 reduces
to the standard 2v20 cos θ sin θ/g result.
To compute the angle θ where this distance is maximum we differentiate Eq.(19) with respect to theta
to find

d`

dθ
=

2v20
g cosφ

[
−2 cos θ sin θ (tanφ+ tan θ) + cos2 θ

(
sec2θ

)]
=

2v20
g cosφ

[
−2 cos θ sin θ tanφ− 2 sin2 θ + 1

]
=

2v20
g cosφ

[
− sin 2θ tanφ+ cos 2θ

]
, (20)

which implies Eq.(19) has a critical point at θ given by

cot 2θ0 = tanφ. (21)

Differentiating Eq.(20) once again and setting θ = θ0, we find

d2`

dθ2

∣∣∣
θ=θ0

= − 4v20
g cosφ

[
cos 2θ0 tanφ+ sin 2θ0

]
< 0. (22)

Thus Eq.(21) defines the maximum length.
�
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6. Walking on a Train-Part II4

A train of length L (measured when it is at rest) and speed v = 3c/5 approaches a tunnel of length L.
At the moment the front of the train enters the tunnel, a person leaves the front of the train and walks
(briskly) toward the back. She arrives at the back of the train right when it (the back) leaves the tunnel.
What is the person’s speed with respect to the ground? (Hint: You will need your answer from Walking
on a Train-Part I)
Solution:
In Part I of this problem, we found that it takes a time

T =
L

v

(
1 +

1

γ

)
=

3L

c
(23)

for the train to pass completely through the tunnel of length L. If during this time a person leaves
the front of the train at the exact moment it enters the tunnel and reaches the back of the train at the exact
moment it leaves the tunnel, then the person has traveled a distance L as measured from the ground
frame. (Try drawing a figure if this is unclear). The person has traveled a distance L in a time T so her
speed is

v0 =
L

T
= v

(
1 +

1

γ

)−1
=
c

3
. (24)

�

4Problem is from [1]
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7. Concept Mapping
A concept map is a diagram which shows how distinct ideas are related to one another. As an example
consider the concept map below.

Figure 6: Example of equation diagram.

It indicates the following logical sequence of derivations: The quotient rule of differentiation can be
derived from a combination of the chain-rule and the product-rule; the chain-rule arises from the
definition of composite functions and the definition of the derivative; and the product rule comes
from the definition of the derivative. (*The arrows denote the fact that whatever is at the “tail” of the
arrow is used to derive whatever is at the “head” of the arrow. )
Using the example in Fig. 6 as an example, create a concept map (with arrows) showing how the
definition of kinetic and potential energy leads to conservation of momentum through the Lagrangian
formalism. Use the following terms as discrete nodes in the concept map:

• Kinetic Energy
• Potential Energy
• Noether’s Theorem
• Definition of Lagrangian
• Definition ofAction
• Definition of Dynamical Symmetry
• Conservation Laws
• Dynamical Symmetry under Angular Translations
• Conservation of Angular Momentum

If you have time associate an equation with each of these terms within the concept map.
Solution:
Solutions can vary and can be variously argued. Here is a possible map:

�
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Figure 7: Conservation of Energy Concept Map
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8. Projectile Motion on a Train
A boy is on a train that is moving with velocity V . Within the train, he throws a ball with speed v0 at
an angle θ from zero height and sees that it completes a full trajectory. From the ground frame, what
is the horizontal distance the ball travels? Again from the ground frame, how long does it take the ball
to complete it’s trajectory? (Hint: You should use a Lorentz Transformation for this problem.)
Solution: We recall that for a frame S′ moving at a velocity V relative to a frame S, we can trans-
form the spatial distance ∆x′ and duration ∆t′ in S′ to the corresponding quantities in S through the
transformations

∆x = γ(∆x′ + V∆t′) (25)
∆t = γ(∆t′ + V∆x′/c2), (26)

where γ = 1/
√

1− V 2/c2. From the basic kinematic equations for projectile motion:

x(t) = v0 cos θt (27)

y(t) = v0 sin θt− 1

2
gt2, (28)

we know we can derive that the total time ∆t′ it takes to complete the trajectory and the total horizontal
distance ∆x′ of the trajectory is

∆t′ =
2v0
g

sin θ (29)

∆x′ =
2v20
g

cos θ sin θ. (30)

Therefore, by Eq.(25), the total horizontal distance covered by the projectile according to a person on
the ground is

∆x = γ
2v0
g

sin θ(v0 cos θ + V ). (31)

And the total time it takes to complete the trajectory, again as measured by someone on the ground is

∆t = γ
2v0
g

sin θ(1 + V v0 cos θ/c2). (32)

�

Side Note:
We note that ∆x/∆t gives us what we expect (by velocity addition) for the horizontal velocity of the
projectile as seen from the ground.

∆x

∆t
=

v0 cos θ + V

1 + V v0 cos θ/c2
. (33)
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9. Atwood and Hamilton 5

Consider the Atwood’s machine, in the figure below. Let x be the vertical position of the left mass,
with upward taken to be positive. Find the Hamiltonian in terms of x and its conjugate momentum,
and write down Hamilton’s equations.
(If you have time write down the solution assuming x(t = 0) = x0 and ẋ(t = 0) = ẋ0)

Figure 8: Atwood Machine from online chapter of [1]

Solution: For this problem we will use the definition of the HamiltonianH in terms of the Lagrangian
L

H =
∑
α

pαq̇α − L, (34)

where
pα = ∂L/∂q̇α (35)

is the canonical momentum, to find the Hamiltonian of the system, and then apply Hamilton’s equa-
tions

q̇α =
∂H

∂pα
(36)

ṗα = − ∂H
∂qα

(37)

to find the equations of motion.
First, the Lagrangian. If we let x denote the height from the ground of m1 then if we increase x the
height of m2 decreases. Only changes in potential energy are physically relevant so we can take the
potential energy ofm1 to be V1 = +m1gx and we can take the potential energy ofm2 to be V2 = −m2gx.

Also, the two masses are connected by a fixed string of length `, and thus they move together
and the speed of each mass is the same |ẋ|. Therefore, the kinetic energy of the first mass is T1 = 1

2m1ẋ
2

and the kinetic energy of the second mass is T2 = 1
2m2ẋ

2. The Lagrangian of this system is then

L = T1 + T2 − V1 − V2 =
1

2
m1ẋ

2 +
1

2
m2ẋ

2 −m1gx+m2gx =
1

2
(m1 +m2)ẋ2 − (m1 −m2)gx. (38)

5Problem is from online chapter of [1]
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To find the Hamiltonian we first compute Eq.(35) to find the momentum of this system in terms of the
velocity. We have

p =
∂L

∂ẋ
= (m1 +m2)ẋ. (39)

The Hamiltonian is only a function of momenta and positions, so for this system we need to express
velocities in terms of momenta. Therefore by Eq.(34) the Hamiltonian is

H = pẋ− L

= p
p

m1 +m2
− 1

2
(m1 +m2)

(
p

m1 +m2

)2

+ (m1 −m2)gx

=
p2

m1 +m2
− p2

2(m1 +m2)
+ (m1 −m2)gx

=
p2

2(m1 +m2)
+ (m1 −m2)gx (40)

Next the Equations of Motion. Applying Hamilton’s equations to this Hamiltonian gives us

∂H

∂p
= ẋ =⇒ p

m1 +m2
= ẋ (41)

∂H

∂x
= −ṗ =⇒ (m1 −m2)g = −ṗ. (42)

Which is the desired answer. Eliminating ṗ from this system gives us the x equation of motion

ẍ = − (m1 −m2)g

m1 +m2
(43)

If we were to solve these equations for the kinematics of our system we would find

x(t) = x0 + ẋ0t−
(m1 −m2)

2(m1 +m2)
gt2. (44)

This result makes conceptual sense. The acceleration of x(t) is only positive ifm2 > m1, and ifm2 = m1

we expect there to be no acceleration because of the balancing gravitational forces.
�
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10. Practicing Lorentz Transformations
In a certain inertial frame S, two events are observed to occur at the same place, but occur L/c apart
in time. In a different inertial frame S′ the same two events are observed to occur L/2 apart in space.
What is the time between the two events in S′? (Hint: You should use a Lorentz Transformation.)
Solution:
For a frame S′ moving at a velocity v relative to a frame S, we can transform the spatial distance ∆x′

and duration ∆t′ in S′ to the corresponding quantities in S through the transformation

∆x = γ(∆x′ + v∆t′) (45)
∆t = γ(∆t′ + v∆x′/c2), (46)

where γ = 1/
√

1− v2/c2. Our goal in this problem is to find ∆t′ by first finding v.
For the system in this problem, ∆t = L/c and ∆x = 0. Thus from Eq.(45) and Eq.(25) we have

0 = γ(∆x′ + v∆t′) (47)
L

c
= γ(∆t′ + v∆x′/c2). (48)

From the first equality we have
∆t′ = −1

v
∆x′ (49)

which when plugged into the second equality gives us

L

c
= γ

(
−1

v
+
v

c2

)
∆x′

= −γ
(

1− v2

c2

)
∆x′

v

= −γ 1

γ2
∆x′

v
= − 1

γ

∆x′

v
. (50)

But from the problem statement we know ∆x′ = L/2, so our equality becomes

L

c
= − L

2γv
(51)

or, equivalently,

2 =

√
1− v2/c2
v/c

. (52)

Squaring both sides of this equation, we have

4 =
1− v2/c2

v2/c2
=
c2

v2
− 1, (53)

and solving for v gives us
v = − c√

5
, (54)

where we take the negative solution because Eq.(49) must be positive. Returning to Eq.(49) and using
∆x′ = L/2, we find

∆t′ = −1

v
∆x′ =

L

2c
√

5
(55)
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