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Abstract Physics is often seen as an excellent introduction to science because it allows
students to learn not only the laws governing the world around them, but also, through the
problems students solve, a way of thinking which is conducive to solving problems outside of
physics and even outside of science. In this article, we contest this latter idea and argue that in
physics classes, students do not learn widely applicable problem-solving skills because physics
education almost exclusively requires students to solve well-defined problems rather than the
less-defined problems which better model problem solving outside of a formal class. Using
personal, constructed, and the historical accounts of Schrödinger’s development of the wave
equation and Feynman’s development of path integrals, we argue that what is missing in
problem-solving education is practice in identifying gaps in knowledge and in framing these
knowledge gaps as questions of the kind answerable using techniques students have learned.
We discuss why these elements are typically not taught as part of the problem-solving
curriculum and end with suggestions on how to incorporate these missing elements into
physics classes.
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1 Introduction: Liberal Arts of the Sciences

Individual practice, it is said, exists at the heart of all physics education. In any physics class,
you’ll invariably hear the professor introduce her lectures with a caveat: The lectures can give
the student some background and context for what he’s learning, but it is only by carefully, and
often independently, working through as many problems as possible that he will become
proficient in the subject.
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This point forms the basis of the argument, if made only implicitly, for why an education in
physics is valuable outside any career related to physics or even science. Having majored in a
subject sometimes touted as Bthe liberal arts of the sciences^ (Notre Dame Department of
Physics 2009)—meaning, a science subject with as wide applicability as an education focused
on history, literature, and philosophy—graduating physics students often find themselves in
the awkward position of ending an undergraduate career where their peers marveled at the
incipient intelligence apparently necessary to work in their chosen subject and entering a job
market where few employers seem terribly interested in the specifics of that intelligence. The
suggested solution is a throwback to the social sphere many physics students were trying to
escape through their studies: marketing. You package yourself not only as someone who
understands the physical laws of the universe, but also as someone who has spent the past
4 years solving, and thus learning how to solve, problems. A report commissioned by the NSF
regarding how physics curricula can be adapted for and justified in an increasing technological
world advocates a similar sense of physics’ relevance:

Undergraduate physics education provides students with unique skills and ways of thinking that
are of profound value to themselves and to society…Physics students learn to develop conceptual
and mathematical approaches to models to help them understand complicated systems and solve
complex problems. As a result of learning the inquiry process and ways of thinking used in
physics, students with a physics education are prepared for success in complex analytical profes-
sional programs such as medicine, business, finance, and law. (Committee on Undergraduate
Physics Education Research and Implementation 2013)

Regarding the claim that physics students Blearn to develop conceptual and mathematical
approaches...to help them…solve complex problems,^ we can ask whether this sense of
physics as conduit to problem-solving mastery is true: that is, do physics students graduate
having learned how to solve problems in a way that is generally useful outside of physics?

Given studies on students’ experiences solving problems in non-course related contexts
(Fortus 2009; Ogilvie 2009; Milbourne 2016), I think it is easier to argue something else,
something more in line with what physics students actually practice. Namely, from their
dozens of courses with many dozens of problems each, physics students graduate having a
solid knowledge of how to solve homework and textbook problems. However, it is not clear
that such a specific type of problem-solving knowledge is at all transferable to less artificial
contexts outside or even inside of academia.

In the following sections, we discuss the inadequacies of physics problem-solving educa-
tion by first using personal examples to argue that the typical qualities of such an education do
not prepare students for research or for work outside of typically academic contexts. We then
discuss a refined and more complete depiction of the problem-solving process and highlight
the steps that that most physics courses miss. We justify these steps by analyzing the historical
accounts of how Schrödinger developed the wave equation and of how Feynman developed
the path integral formalism of quantum mechanics. We conclude by outlining (and refuting)
the possible reasons for not teaching the full problem-solving process, and then we discuss
ways to incorporate a full representation of that process into the curriculum.

2 Author’s Experience: Problem-Solving in Academia

What often surprises a beginning student about a first research project is the sheer amount of
fumbling required before what one may have thought of as the Breal work^ can begin. The
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student spends much of his or her time meandering and confused, simultaneously trying to
move out of this confusion and to suppress the debilitating intellectual insecurity it engenders.
Worse still they might have done quite well in their course work, and thus have entered
research with a false sense of confidence. This confidence likely grew from an education that
trained them for the clean parts of research, for the solutions to problems which were well-
articulated, manifestly present, and known to be important. The fumbling (which is arguably
the true Breal work^ of research) such a student goes through is concerned with finding better
ways to represent the governing question, and navigating this process is something that, in my
experience, an undergraduate education in physics does not teach.

I remember feeling somewhat betrayed when I realized this. I was a competent student in all
the directions that supposedly mattered (i.e., mainly in my course work), and yet I seemed to
be woefully unprepared for research. My first research project concerned R-axions in theories
of multiple supersymmetry breaking, a somewhat niche area of high energy theoretical physics
(The details of the work are not crucial, but see the footnotes1 for a short description of a
supersymmetry, supersymmetry breaking, and R-axions). The task was to investigate the
physical properties of such theories and to determine the masses and ultimately the experi-
mental signatures of the associated particles. However, at this time multiple supersymmetry
breaking was (and still is) a fairly unexplored topic, and I did not have the requisite
background in supersymmetry to even begin the project. Therefore, as a first step, my advisor
suggested I work on a toy model of the problem which only required quantum field theory, a
pre-requisite of supersymmetry.

Unfortunately, even this toy model proved intractable. During the first months I worked on
the problem, I would begin and end my work sessions in confusion. I knew quantum field
theory and had previously spent many hours computing decay rates, cross sections, and loop
diagrams using the standard methods of quantum field theory, but, for the toy model, it was not
clear how or where such techniques could be useful. It was not even clear to me what questions
I could generate in model which could serve as reasonable analogs to the questions I solved in
the standard quantum field theory texts, or even whether these questions were the ones I
needed to answer in order to develop a framework which could be extended to the supersym-
metric case.

Those who have successfully made the transition from student to researcher, might
recognize something obvious in what it took me many frustrating years to learn: That simply
because you solved all the problems in a course, it does not directly follow that you can
creatively or flexibly use what you have supposedly learned in a way that informs the way you
see the world. The issue is that through your education you learned how to solve problems
meant to inculcate you in the techniques of your discipline, but the world’s problems bear no
fidelity to that representation, that is, the world does not immediately present itself in a way
amenable to the methods you spent so long learning.

1 Supersymmetry is a postulated symmetry of nature which states that for every boson (fermion) in the universe
there is a fermion (boson) with the same mass and interaction properties (Wess 2000). Physicists say that the
symmetry of a theory is Bbroken^ when the dynamical equations of the theory satisfy the symmetry, but the
solutions to those equations (i.e., the physical observations) do not (Weinberg 2005, pp. 163–76). Therefore, if
our world is indeed supersymmetric—meaning that it is invariant under appropriate exchanges of bosons and
fermions—supersymmetry must be broken at every-day energy scales because it is clear that the world around us
is not manifestly supersymmetric. Theories of broken supersymmetry can include a particle called the BR-axion^
which is itself associated with another broken symmetry called R-symmetry (Nelson and Seiberg 1994). It should
be noted that supersymmetry is a conjectured symmetry and has not been physically observed.
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In the end, I was able to determine the masses of the particles in the toy model—a success
which was just small part of a much larger investigation which was never completed—but
what allowed me to make what little progress I did was an abandonment of the habits which
were so instilled from traditional education. I had to learn to engage in a problem-solving
process much deeper than the one to which I was accustomed by learning how to ask myself
questions when confused and explore a subject area beyond the confines of my central
question.

That course work does not necessarily prepare students for open-ended challenges as they
occur in research was shown by Fortus (2009). When analyzing how professors of physics and
post-docs and first-year graduate students in science education (all of whom had at least a BA
in physics) solved well-defined and Breal world^ Newtonian mechanics problems—the latter
of which were defined as problems requiring the solver to make extensive assumptions and
choose for themselves the relevant concepts and algorithms necessary for solution—Fortus
found that participants were not successful in transforming the unfamiliar context of the real-
world problem into a recognizable problem archetype, and ultimately solving it, unless they
had extensive prior experience in dealing with such open-ended problems. For the participants,
this experience was not garnered through their prior physics course work—all of which was
extensive—but through their prior work in scientific research.

Given the results of this study, my argument may strike some readers as a weak one to
make. Of course physics classes do not prepare students for open-ended problems as they exist
in research. Only research can do that. However, here, research is just an example of a context
where the general problem-solving techniques a physics student apparently learns throughout
his or her education are shown to not at all be applicable to more realistic problem contexts.
And the fact that this problem-solving education is shown to be inapplicable even in a less
artificial space still within the domain in which it is obtained (namely academia) is discon-
certing. For if indirect problem-solving education proves to be inadequate for problems in
research, a prototypical academic activity, how might it fare in preparing students for work
outside of academic contexts?

3 Author’s Experience: Problem-Solving in Industry

In my first year in graduate school, I completed freelance work for Reasoning Mind, an
educational software nonprofit which seeks to bring the relatively higher math education
standards of Russian elementary schools to the US school system. It was a data analysis
project, and at the start of the work I was given a list of questions to answer and a few
gigabytes of excel spreadsheets which apparently held the answers to those questions. It was a
strange experience to be so completely lost. I had spent the prior semester in a data analysis
class and the year before learning Python in ways very similar to how I learned during my
previous physics education. In homework assignments or in the course textbook, there would
be an assigned problem, as explicit and as clear as possible to prevent the student from being
confused, and we students would solve the problem using the techniques we were learning.
But for my work in Reasoning Mind, the Bproblems^ I was tasked with solving were not at all
as clearly framed as the problems in my homework assignments. In homework assignments I
was asked to BWrite a for loop which prints the location of each vowel in each word of a
sentence,^ or BWrite a function which implements Euler’s algorithm for pendulum motion,^
whereas for the data analysis project I was asked BWhat is the average performance trajectory
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for a student throughout the curriculum?^ or BDo students who run out of time on questions
early in the curriculum catch up later on?^

Therefore, before I could begin any explicit work on the project, I had to teach myself how
to answer such questions, going through the slow and uncertain work of attempting to
represent these more general queries in ever more concrete forms so that I could interpret
and answer them through the lens of computational techniques which seemed to make no
reference to them in the first place. Moreover, my physics education, an education supposedly
doubling as training in problem solving, had mostly supplied me with heuristics which seemed
concerned with solving an altogether different species of problem. For how can you Bwork
backwards^ when you don’t even have a notion of what the answer should be? How could you
Bguess and check^ when the question isn’t even framed quantitatively?

In short, I was running into the same wall I had encountered when I had first started
research, namely that the problems I needed to solve were distinguished in scope and in the
precision of their definitions from the problems I had learned how to solve. The fact that I
encountered this discrepancy in a context wholly removed from my foundational physics
education suggests that not only did that education not entirely prepare me to solve problems
outside of physics, but also, given my previous data science and programming courses, this
pedagogical lack was perhaps a symptom of technical education in general.

I should mention that my experience does not appear to be representative of how all
graduates of physics degree programs view their education. In interviews with six physics
graduates, who had moved on to careers in medical physics, computer programming, and data
analysis, the researchers found that a majority saw their education in problem-solving and
analytical thinking as the most important of the skills they developed (Sharma et al. 2008). In a
later more comprehensive survey of 108 physics graduates (about 70% of whom entered the
non-academic workforce after graduation), the researchers again found that graduates on
average saw problem-solving as their most developed skill (O'Byrne et al. 2008).

However, the employers of these physics graduates saw their skills with somewhat more
nuance. In the earlier study, two employers stated that Bwhilst physics graduates are generally
competent at carrying out tasks or experimental work when the procedure is given, they found
that they do less well when forced to start from scratch,^ although these employers still stated
that physics graduates were better equipped than other graduates in tackling problems outside
their field of expertise.

4 Problem-Solving: Inside and Outside the Classroom

What was the source of my dissonant problem-solving experiences both in research and in
industry? Phrased differently, why was the real-world application of the problem-solving
process not accurately reflected in my tacit education in that that process?

The thesis of this article is that the principal missing element concerns questions, specif-
ically a failure to account for the role of questions in the so called Bproblem-solving process.^
The very phrase Bproblem-solving process^ is predicated on a false idea of why problems are
solved or even how they are created. It seems to suggest that the goal of implementing the
process is to solve the problem and that one begins with the problem explicitly stated and then
needs to implement heuristics and techniques in order to find the solution.

Instead, it is more accurate to think of the problem as a deliberately chosen framework
imposed on some sense of incompleteness. Something confusing or unclear in a knowledge
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network or some need materially unrealized is brought closer to clarity or realization,
respectively, by first expressing this incompleteness in a way which better allows for the
possibility of a solution. This framework is what we most often think of as the problem itself.
This conception of a problem as centered around incompleteness is similar to Andreas Faludi’s
conception of a problem as a Bsubjective state of tension^ (Faludi 1973, pp. 82–4), except here
we consider this state of tension to exist apart from and prior to any definition of a problem.
That is, we consider confusion and tension to not, in of themselves, represent problems unless
they are articulated as such.

What then is the true problem-solving process? The status of How to Solve it
(Polya 2014) as a useful and comprehensive reference for problem-solving heuristics
suggests we could consider its commentary on the problem-solving process as arche-
typal of general views on that process. In the text, Polya describes the process as
consisting of four phases: First, one has to understand the problem. Second, one has
to plan a solution. Third, one has to carry out the plan. And, finally, one must look
back and review the completed solution.

Polya’s text aims to provide general problem-solving heuristics in all contexts, but
since we are primarily discussing problem-solving in physics we can also turn to
canonical introductions in physics to get a sense of physics problem-solving in particular.
A 2014 AIP report (Tesfaye et al. 2014), cited Fundamentals of Physics (Halliday et al.
2010) as comprising a plurality of textbooks used by American high school teachers for
Advanced Placement Physics C, the equivalent of a calculus-based 1st year college
course. And yet, while Fundamentals of Physics includes on the order of a thousand
physics problems, there is never a discussion of the general process by which students
should solve problems. More advanced introductions are better on this account. Intro-
duction to classical mechanics (Morin 2008) is often used in introductory physics
courses where the incoming students have had more in-depth physics and mathematics
exposure. For example, Morin’s is the main text in the first semester advanced introduc-
tory physics course for physics majors at Harvard University, and its older inspiration,
Introduction to mechanics, (Kleppner and Kolenkow 2013)) is used as the main texts in
similar courses at MIT (Burgasser 2008), Rice University (PHYS 111 001 – Rice’s
Course Schedule 2015), and UC Santa Barbara (Fratus 2016).

In Introduction to classical mechanics, there is again no specific description of the problem-
solving process, but we can infer the text’s sense of that process from the suggested problem-
solving strategies in the first chapter. Among these strategies are to BDraw a diagram, if
appropriate,^ to BWrite what you known, and what you’re trying to find,^ and to BSolve things
symbolically.^ All of these are heuristics found in, or similar to those found in, Polya’s How to
Solve it. This similarity in heuristics suggests that Morin too conceptualizes the problem-
solving process as something similar to the four-stage model put forward Polya’s text.

However, Polya’s account of the problem-solving is incomplete by default because the
heuristics he advocates are too precisely tuned to their apparent objective. That is, both Polya’s
and Morin’s heuristics and the associated problem-solving processes they suggest, are mostly
concerned with ways to solve problems which are already well-formulated and where the most
crucial step of the process, recognizing that a potential problem even exists, has already been
performed for the student. In this way, the problem-solving process is mischaracterized by
many educational treatments of problem-solving because these treatments rarely discuss how
one could develop the problem or motivating question without the already provided context
typically doing so.
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So, instead of turning to educational accounts of the problem-solving process, we will
attempt to find a more complete description of the process by outlining the stages one goes
through to solve a problem in a real-world, albeit still scientific, context.

Constructed examples are sometimes unreliable arenas in which to explore ideas about
procedure because one could possibly develop an example which, although illustrating one’s
point, does not have a legitimate mirror in the world. We will try to correct for this by, in the
next section, connecting our depiction of the problem-solving process to historical accounts of
Schrödinger and Feynman developing the wave equation and path integrals, respectively.

Confining our examples to scientists may appear to be an unnecessary limitation, but if the
problem-solving education of science students has any universal value, it is primarily a value
in the direction of simulating the knowledge and techniques actual scientists use to solve
problems. More generally, students are taught statistics from statisticians, mathematics from
mathematicians, and history from historians not merely because the academic practitioners of a
discipline often have the best grasp of the discipline, but also because students’ engagement
with the discipline, either outside or inside academia, requires employing tacit skills and
knowledge which only practitioners can model and eventually impart to students.

Thus, the student of statistics learns not only how to compute linear regressions
and correlations, but also of the manifold ways that statistical data, without an
account of the underlying analysis, can mislead and thus be misused. The student
of real analysis learns not merely the standard proof that differentiability implies
continuity and the fact that the converse implication has no proof, but also of the
unreliability of intuition and the larger necessity of justifying claims, both mathemat-
ical and not, with rigorous argument. The student of history learns not only about
America’s mid-twentieth century excursions into foreign statecraft, but also that there
is a larger context to existing cultural norms and political relationships, and that a
country’s conception of itself exists as just one point in one narrative that is still
being lived and written.

Much in the same way that statistics, mathematics, and history courses simulate for students
the best practices for engaging with data, quantitative arguments, and current events, physics
courses simulate how best to analyze the underlying physical laws of a phenomena, and also,
considering physics’ role as a cultivator of problem solving ability, the best general practices
for solving problems. So although not all physics majors will become physicists, it is still
useful to consider their education as preparation for work in this direction.

Say we have a proverbial investigator who is solving a problem concretely in her work
using methods she learned during her education. How and when does she get to the point that
she is solving problems of the kind that she might have encountered in a modern college
classroom? Ever before the investigator can solve a problem of the type found in a typical
textbook or an assignment, she must create the problem. This involves first recognizing that
something in her environment, intellectually or physically rendered, deserves inspection. This
recognition in turn leads her to admit to some measure of personal confusion, incompleteness
in her view or engagement with the world, or some need which must be fulfilled in order to
achieve a larger goal. In short, there is a Bstate of tension^ (Faludi 1973, pp. 82–4) which
suggests that there is something in her space of knowledge that is missing and could
potentially be filled. This space is often felt intellectually as a sort of nagging lack, ever before
any concrete problem formulation is devised. But once a need is recognized, she can then work
to formulate a framework (using the techniques and language that she has previously learned)
to address it. This is the second stage of the true problem-solving process, and it is rarely a one-
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shot activity. There are always more possible frameworks than one could ever possibly
investigate, and some are better than others.

Thus, the stage of developing a framework (i.e., creating the problem) exists somewhat
cyclically with the stage of implementing the framework (i.e., solving the problem). Out of
many possible problem frameworks, the investigator chooses an optimal one—perhaps judged
by its solubility, esthetics, or how well it can address the original gap in knowledge—and then
implements the framework to check whether it is as useful as initially perceived. If the
framework proves to be less useful than desired, one returns to the problem development
stage and the process begins again. After a potential problem is recognized, a problem
framework is developed and the investigator can then work to solve the problem in the manner
typically presented in course textbooks. This might involve her using heuristics, borrowed
techniques, or even something simply algorithmic. It is this part of the problem-solving
process that education most successfully models and teaches. But in a more realistic scientific
or real-world context, the other parts of the process are just as necessary, for without them one
could never reach this more concrete stage. We summarize this characterization of the
problem-solving process in Fig. 1.

As a comparison, a similar problem-solving process was presented by Bransford and Stein
(1993). Called the IDEAL model, it takes problem solving to consist of (a) Identifying the
problem, (b) Defining and representing the problem, (c) Exploring strategies for solving the
problem, (d) Acting on the strategies, and (e) Looking back and evaluating your results. Thus,
the IDEAL scheme is similar to that in (Polya 2014). However, the scheme depicted in Fig. 1
differs from the IDEAL scheme (and most other characterizations of the problem-solving
process) in that it incorporates the intellectual state which precedes the identification or
definition of a problem. Ever before a problem is recognized to even exist, there is a state of
confusion or incompleteness which is only acknowledged and responded to upon the decision
to define a problem framework. It is these dual steps of recognizing and then articulating one’s

Fig. 1 The steps of the problem-solving process: identify a gap in knowledge or a need; formulate a problem
framework to address gap; develop a solution to the problem framework. Physics courses provide extensive
practice in solving well-formulated problems but often do not teach students to formulate problems themselves,
or to identify and articulate the confusion or gap in knowledge which is the source of the problem. Although the
steps are described as a linear sequence, as the investigator’s understanding of the inconsistency or confusion
develops, she returns to the earlier stages again and again to find better ways to frame, or even identify, the
situation she is trying to understand
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initial state of confusion as an appropriate problem framework which are rarely considered in
most characterizations of the problem-solving process.

5 Historical Examples of the Process

We can see this model implemented in the way scientists throughout history solved problems.
We will take Schrödinger’s construction of the wave equation and Feynman’s development of
path integrals as examples and track each scientist’s work from the start of their investigations
to the point where they were solving problems akin to what one finds in a modern physics
textbook.

5.1 Schrödinger and the Wave Equation

In 1900, Max Planck, in an attempt to explain the spectrum of the frequencies of light
produced by a perfectly emitting heated body (i.e., a Bblack body^), gave an ad hoc derivation
of what is now known as the Bblack-body radiation formula^. Seeking to better justify this
result through combinatorial methods that had been employed by Boltzmann, Planck re-
derived the formula this time from the assumption that the total energy of the light consisted
of integer multiples of h ν, where ν is the frequency of light and h was a numerical quantity
that we now call Planck’s constant. In this assumption, historians recognize the beginnings of a
theoretical quantum description of nature, but, at the time, Planck had no such recognition; the
discrete energy assumption was introduced more out of an esthetic desire for an improved
derivation rather than out of any more fundamental physical insight, and thus Planck was
reluctant to interpret physically the implications of his formalism (Kuhn 1987, pp. 92–110).

Interpretation and understanding came in 1905 through Einstein’s work on the photoelectric
effect (Pais 1982, pp. 379–82). Attempting to explain why electrons are ejected from a metal
when light shines on it, Einstein fully committed to Planck’s discrete energy postulate and
further postulated that not only did emitted light come in discrete quantities, but in fact all light
was constitutively discrete and at sufficiently small scales exhibited particle like-properties.

In 1924, Louis de Broglie published his dissertation where he argued the converse of
Einstein’s photoelectric effect postulate. Namely, taking Einstein’s work on photons and the
newly developed theory of special relativity, de Broglie argued that similar to the way
electromagnetic waves can have particle-like properties, particles can have wave-like proper-
ties (Mehra and Rechenberg 1982, pp. 582–603). He thus established that a quantum particle
of a certain momentum p carried with it a wave with wavelength λ given by λ = h/p, where h is
again Planck’s constant.

This was the state of affairs when, in November of 1925, Peter Debye urged
Schrödinger to review de Broglie’s recently published thesis in a biweekly research
seminar. To prepare for the review, Schrödinger worked through de Broglie’s thesis
and sent letters to Einstein and other physicists expressing his awe of the work and his
desire to obtain a better sense of what it really meant to consider a quantum particle as a
wave. In a letter to Alfred Landé, Schrödinger wrote:

…I have been intensely concerned these days with Louis de Broglie’s ingenious theory. It is extraordi-
narily exciting, but still has some very grave difficulties. I have tried in vain to make for myself a picture
of the phase wave of the electron in the Kepler orbit. Closely neighboring Kepler ellipses are considered
as rays. This, however, gives horrible ‘caustics’ or the like for the wave fronts. (Moore 1994, p. 192)
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In this correspondence, we see Schrödinger recognizing the conceptual potency of de Broglie’s
results while also struggling to understand and fully utilize that potency. It seems
Schrödinger’s main road block was that he did not know the correct question to ask.

This question came during the seminar where Schrödinger presented de Broglie’s
work. In the seminar, Debye mentioned that de Broglie’s wave-particle duality ideas
were interesting but woefully imprecise. In his opinion, any system that truly had
wave-like properties should also have a wave equation. Thus, Schrödinger’s task was
set: He needed to find a wave equation for quantum particles. Weeks later he obtained
what is currently known as the Klein-Gordon equation. Weeks later he applied the
equation to the study of the hydrogen atom and used it to compute the associated
spectrum of energy levels. But the computed energy levels did not match the
confirmed predictions of the Bohr’s old quantum theory. Consequently, Schrödinger
developed a new equation (what is currently known as the three-dimensional time-
independent Schrödinger equation) and found that it reproduced the correct spectrum
when applied to the hydrogen atom (Moore 1994, pp. 192–207).

In Schrödinger’s experiences, we see the hallmarks of what we previously de-
scribed as the problem-solving process. There was first the recognition of a gap in
knowledge (Schrödinger’s tentative search for a more concrete picture of de Broglie’s
wave-particle ideas and Debye’s suggestion that a wave equation is necessary to
precisely describe the duality); an imposition of a problem framework to address that
gap (Schrödinger’s development of the Klein-Gordon equation for the hydrogen
atom); a solution of that framework (Schrödinger’s calculation of the Klein-Gordon
hydrogen atom spectrum which incorrectly predicted the known results); and when
that solution was found to be inadequate, a repetition of the process from the problem
framework stage (Schrödinger’s development of a non-relativistic version of the wave
equation and his later application to the hydrogen atom to obtain the correct
spectrum).

5.2 Feynman and the Path Integral

In the early 1940s, Richard Feynman progressed through similar stages as he developed his
path integral formulation of quantum mechanics and applied it to the problem of removing
oscillator degrees of freedom from quantum particle interactions. The subsequent historical
discussion is drawn from (Mehra 1994, Chapters 5 and 6) unless otherwise cited.

For context, by the end of the 1920s, quantum mechanics had just concluded a rapid few
years of progress during which it had largely matured into its modern manifestation. By the
end of that time, the quantum theories of the day were Matrix Mechanics, formulated around
matrix operators and the Heisenberg uncertainty principle, and Wave Mechanics, based on
Schrödinger’s wave equation. The two theories accurately predicted the properties of various
quantum systems and were shown by Schrödinger to be equivalent (Schrödinger 1926). With
physicists feeling as though they well understood the quantum physics of particles, they next
set their sights on understanding the quantum physics of the electromagnetic field and began
developing what is now known as quantum electrodynamics (Schweber 1994, pp. 76–92).

Quantum electrodynamics was specifically treated by Dirac in the last chapter of his
Principles of Quantum Mechanics (Dirac 1930), and also by Walter Heitler in The Quantum
Theory of Radiation (Heitler 1936). However, as Feynman realized by the end of his
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undergraduate degree in 1939 (Mehra, The beat of a different drum, Mehra 1994), there were
problems with both treatments.

All I could remember in Heitler and Dirac... was that they could not solve the problems. They were
getting infinities, and the last sentence in Dirac's book was that some new ideas were needed. That's the
main thing I got from Dirac; that new ideas were needed. This, to me, meant that I did not have to study
the old [theories].

Here, Feynman referred to the fact that the first calculations of the quantum properties of the
electromagnetic field led to some physical quantities (like the energy of an electron) being
equated to divergent integrals, that is, nominally infinite quantities. This quote reveals that
from early on in his education, Feynman recognized fundamental problems inherent in the
basic theories of quantum electrodynamics. Moreover, his dissatisfaction with the existing
representations of the problem proved to be pivotal to his later work as it was only by
attempting to develop an original solution that he was led to incorporating the principle of
least action into quantum mechanics.

Now, Feynman also knew that there were Binfinities^ in classical electromagnetism as well;
computing the classical electromagnetic energy of an electron due its interaction with its own
field also yields a divergent quantity. Recognizing the divergence problems in both quantum
and classical theories of electromagnetism, Feynman then hypothesized that the electromag-
netic field was fundamentally an incorrect physical quantity, and he believed that the solution
to both divergent problems lay in a formulation of electrodynamics in which the electromag-
netic field did not consist of independent degrees of freedom, but was completely determined
by the positions and velocities of charged particles. The idea was that without an independent
electromagnetic field, particles could only act on other particles (that is, never on themselves)
and thus there would be no divergent self-interactions.

In his work with John Wheeler, Feynman formulated such a classical theory of electro-
magnetism. This Baction-at-a-distance^ theory presented the electric and magnetic fields as
arising solely from the motion of particles and gave finite values for the self-energy of an
electron (Wheeler and Feynman 1945). The theory was later shown to be flawed because it
could not reproduce standard results in classical electrodynamics, but it was still an important
starting point for Feynman’s later work.

With the self-energy divergences of the classical theory of electromagnetism eliminated
(although incorrectly so) Feynman’s next task was to use his formalism as a new basis for
quantum physics. However, he faced one major problem: The classical theory he developed
with Wheeler was grounded in Lagrangian mechanics and a principle of least action, while the
quantum systems of the day were based on analogs of Hamiltonian mechanics. Now, there is a
way to transform the Lagrangian of a system into the system’s corresponding Hamiltonian and
also a way to write the principle of least action in terms of a Hamiltonian, but Feynman
decided what was needed was a formulation of quantum mechanics which employed a
principle of least action in terms of Lagrangians.

In the fall of 1941, 2 years into his graduate studies at Princeton, Feynman met Professor
Herbert Jehle at a bar. Feynman talked with him about the problems he was working on, and in
particular asked him if he knew of any way of doing quantum mechanics with a principle of
least action. Jehle expressed personal ignorance in this direction, but also told Feynman about
one of Dirac’s papers where Lagrangians were shown to be relevant to quantum mechanics.
The next day, the two of them visited the Princeton library where they looked at Dirac’s paper.
Dirac had indeed discussed the relevance of the Lagrangian to quantum physics, but there were
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ambiguities in his presentation, and there was no analytical derivation concerning the role the
principle of least action might play. In the library with Jehle, Feynman clarified one ambiguity
on a blackboard by showing that the operator which took a wave function from position x1 at a
time t1 to a new position x2 at a time t1 + ϵ (for infinitesimal time ϵ) was proportional to the
exponential of iϵ/ℏ times the Lagrangian. He also showed that from this evolution operator one
could derive the time-dependent Schrödinger equation. Feynman had thus found an explicit
way to employ Lagrangians, but he still lacked a way to incorporate the action (i.e., the time
integral of the Lagrangian) into quantum physics.

A few days after his meeting with Jehle, Feynman considered how the evolution operator
might change if one were interested in evolution over long, rather than infinitesimal, times. By
multiplying many of Dirac’s evolution operators together for a sequence of times, Feynman
found that the overall argument of the resulting exponential was a sum of the Lagrangians over
the times considered. That is, in the continuum limit, he found the argument of the exponential
was the classical action. Through this calculation Feynman had derived what we now call the
path integral of quantum mechanics: he had demonstrated that to find the evolution operator
for long times, one would need to integrate the exponential of the classical action over all
forward-paths connecting the starting and ending points of the possible trajectories.

By this point, Feynman had succeeded in his goal of finding a way to incorporate actions
and Lagrangians into quantum mechanics. But his larger goal of showing that such an
incorporation allowed one to solve the divergence issues in quantum electrodynamics still
lay remote. According to his initial program, he needed to show that it was possible to use this
new formulation of quantum mechanics to eliminate the electromagnetic field from particle
interactions. The specific problem of charged particles interacting through an electromagnetic
field was analytically too difficult to solve, so Feynman considered a toy problem which
contained many of the properties of the real problem. He considered a system of two particles
which are not coupled to one another but interact through each of their individual couplings to
a harmonic oscillator. The two particles represented two electrically charged particles and the
harmonic oscillator represented for the electromagnetic field. With his newly formulated path
integral representation of quantum mechanics, Feynman showed that it was indeed possible to
eliminate (specifically, Bintegrate out^) the harmonic oscillator degree of freedom from the
system and thus reduce it to one which only included direct interactions between particles. He
had thus provided a proof-of-concept demonstration of his larger goal of eliminating the
electromagnetic field from quantum particle interactions.

We should mention two ironies in this historical development. First, Feynman as an
undergraduate disliked employing Lagrangians and the Euler-Lagrange equations to solve
mechanics problems because he felt they obscured a physical understanding of the system
considered. But Lagrangians ended up being fundamental to his new approach to quantum
mechanics (Gleick 1992, pp. 60–1). Second, his new approach had as its overriding goal, the
elimination of the electromagnetic field in quantum electrodynamics and more generally, one
could argue, the elimination of all fields from quantum field theory. But Feynman was not
successful in either of these directions, and after his path integrals were generalized, they were
instead found to be an exceedingly natural (if not the most natural) context to study quantum
field theory with fields still considered fundamental (Weinberg 1995, Chapter 9).

In Feynman’s path to path integrals, we see the basic steps by which a problem is solved in
a real scientific context. We can take Feynman’s solution of the toy model—where a harmonic
oscillator was eliminated from a system of two particles—as the main problem he solved. But
before he solved this problem, and before he even concretely formulated it as a problem one
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could solve, his main preoccupation was with the apparent contradictions of quantum electro-
dynamics. Namely, he first recognized that the existing formulations were producing
unphysical Binfinities,^ and he sought to fix these problems by developing a frame-
work for classical and quantum physics where the electromagnetic field was not
present. In his attempt to create such a framework, he was led to another problem
of presenting quantum mechanics in the language of a principle of least action. The
scheme he used to solve this latter problem was extrapolated from work by Dirac, and
from it Feynman developed the path integral for quantum mechanics. With the path
integral, he then used a toy model to investigate a conceptually and analytically
simplified solution to the problem of eliminating oscillator degrees of freedom from
particle interactions.

5.3 Inferences from Historical Examples

The steps of the problem-solving process that both Schrödinger and Feynman implemented
were to first identify a point of confusion; second, to formulate a problem framework to
address the confusion; third, with the framework established, to develop a solution by
implementing what is typically known as the problem-solving process. When the obtained
solution failed to solve the original problem, they returned to the problem formulation stage
and tried to develop a different framework.

Key to the progress both Schrödinger and Feynman made towards the solutions of
their respective problems were the questions they asked. Some of these questions
were asked within the explicit context of the concrete problems they eventually
solved, but the most important questions lay at the start of their investigations when
they were formulating the problems themselves. Questions such as BIs there a way to
frame the wave properties of the electron through a wave equation?^ and BHow can
one study quantum mechanics through an action principle?^ were the starting points
to their works and without these initial questions, they would never have reached the
more epistemically solid areas of work where more routine mathematical manipula-
tions were applicable.

6 Reasons for the Missing Curriculum

The missing curriculum in problem-solving education exists in the first two steps of the
problem-solving process depicted in Fig. 1, two steps which we have seen were crucial in
Schrödinger’s development of the wave equation and Feynman’s development of path inte-
grals. The problem-solving process as it is conveyed in typical physics courses today focuses
almost exclusively on teaching the student to solve explicitly framed problems and rarely
considers how those problems were developed or how to, for oneself, move from ill-defined
queries to explicitly defined ones.

This is not a new claim. Two decades ago, Mazur (Mazur 1996), for example,
mentioned the artificiality of physics problems, and Root-Bernstein (Root-Bernstein
1989) recognized that scientific work more legitimately concerns the recognition of
problems rather than merely the solution of existing problems. More recently, Fortus
(2009) has shown that even students with a BA in physics are incapable of
transforming ambiguous problem contexts into well-defined problem contexts. So,
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given the prior recognition of the limitations of current educational models, why do
courses still focus mostly on evaluating student answers rather than teaching them
how to ask questions?

A cynical possibility is that the reason for the curricular gap is philosophical and deliberate
rather than technical and unintentional. That is, maybe there is something about systems of
education and how they exist in the larger structure of employment and capitalism that makes a
focus on answers evaluated by figures of authority, rather than inquiries initiated by those
lower in the institutional hierarchy, an eminently desirable model of education (Schmidt 2001,
pp. 161–79).

Kuhn had a different perspective. He argued that an education in physics, framed primarily
around learning the solutions to a large set of canonical problems—and not at all focused on
the historical questions which led to those problems, how one might learn to ask such
questions, or the competing interpretations of phenomena which might have led to a different
set of questions—is the main reason science progresses so much more rapidly than other
academic disciplines, and also why it experiences scientific revolutions as conclusively as it
does (Kuhn 2012, Chapter 4).

Scientists who are trained and, in a sense, indoctrinated in a certain physical world
view, then take that view for granted as they study physical phenomena. Inevitably they
encounter phenomena which cannot be encompassed by this representation of the world,
and in response they label this Bincommensurable phenomena^ as anomalies. These
anomalies remain on the fringe of the subject until they are resolved by slightly extending
the framework of the subject, or until they are revealed to have a scope much larger than
anticipated. In this latter case, what Kuhn calls a Bcrisis^ occurs and the scientific
community (or at least parts of that community) becomes cognizant of a limit to their
knowledge—a limit which was, indeed, always there—and they are then forced to develop
a new physical framework to push back the boundaries of those limits.

This is part of the reason, Kuhn argues, that although scientific revolutions are
perhaps the most dramatic form of progress observed in science, educational systems
do not train future scientists to recognize when they are happening or to even initiate
them, but rather to perform the more incremental and daily work termed Bnormal
science.^ In a sense, students are trained to be soldiers, who work out the conse-
quences of principles they have been taught are correct, as opposed to revolutionaries
who question those principles and try to build new ones. The idea is that these
principles do not need to be routinely questioned, and from the perspective of the
scientific community at large it is simply more efficient for most practitioners to work
out the consequences of existing principles than to be distracted by a needless search
for some different foundation. In fact, however, the two modes of working are not
entirely distinct as it is by working out the consequences of existing principles that a
scientist learns of the areas where new principles are needed.

Thus, I am not arguing against Kuhn’s point. Rather, I think there are better ways
to train scientists to perform and fulfill the normal science function that Kuhn claimed
is central to scientific progress. Namely, besides the subject and content knowledge of
physics this training claims to provide, it also claims to provide students with the
habits and heuristics needed to solve problems. But this second claim is rarely
realized due to a misguided focus on only a single aspect of the problem-solving
process, and, because the subject-based knowledge is most effectively developed
through solving problems, the first goal is often not realized as well.
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7 Learning to Formulate Questions

7.1 Becoming Effective Questioners

To effectively work through the often implicit and ambiguous initial parts of the problem-
solving process, students need to become effective questioners. There are a number of ways to
do this, and each way concerns modifying the types of problems students are assigned. In
describing these modifications, I will use examples from my own teaching experiences and
contextualize them with studies from the research literature.

In past courses, I have assigned tasks which require students to practice developing and
answering their own questions about physical systems. Instead of giving students a physical
system and then a problem concerning that system, I would give students the physical system
and then ask them to generate several questions of their own concerning that system. When
and where such tasks are included in the traditional assignments depends on the pre-requisites
for the course and how much material the course has already covered. If an instructor is
drawing from recently learned material in a new course, students may not have built the
technical skills or the vocabulary to answer their own questions or even to formulate such
questions in a way that they are answerable. But they could still practice these skills using
material from the list of prerequisites for the class. For example, in a course on mechanical
oscillations and waves, the first problem set I assigned included a task where students were
asked to develop and answer three questions about a ball being launched from the top of a hill
(Fig. 2), a task which was well within their skill-set given that classical kinematics was a
prerequisite for the course. For this question, students were graded on the depth of their
question (for example, asking BWhat is the angle at which the ball hits hill?^ resulted in more
points than the question BWhat is the acceleration due to gravity?^) and the technical

Fig. 2 Example BWhat is the question?^ problem. The objective of the problem is for students to practice asking
and answering their own questions about physical systems
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correctness of their solution. As the course progressed, I drew on recently learned class
material to develop these BWhat is the question?^-type problems.

These types of problems are similar to Jeopardy problems (Heuvelen and Maloney 1999;
Rebello et al. 2007) where students are given an equation or figure and are asked to state the
physical context in which the equation or figure might be applied. In both cases, the purpose of
the inverted structure of the problem is to promote the flexible manipulation and representation
of physics concepts in a way akin to how experienced physicist organize and apply their
knowledge.

Besides assigning new types of problems, an instructor could be flexible in accepting the
solutions a student is allowed to turn in for an assignment. As I was encouraged to do in my
first research project, a physicist who finds that a main problem is too difficult to solve directly
often turns to a simpler, but related, problem in order to obtain a qualitative sense of the
properties of the first problem. Such problems are often termed Btoy models^ and there are
numerous historical examples of physicists defaulting to toy models in the face of an insoluble
desired problem and yet still finding something interesting: Feynman’s thesis was geared
towards solving a toy model of quantum electrodynamics (Feynman and Brown 2005); As his
first project in physics, Freeman Dyson was tasked with studying a toy model of what is now
termed the Lamb Shift (Dyson 1948; Schweber 1994, pp. 497–500); and arguably the most
famous soluble model in statistical mechanics is a toy model of magnetism first solved in one-
dimension by Ernst Ising (Brush 1967; Taroni 2015).

To encourage students to pose and solve such toy problems as a general problem-solving
strategy, an instructor could be flexible in accepting solutions by allowing students who find
assigned problems intractable to solve a related problem of their own and to then explain how
their solution is related to the potential solution of the original one. In students’ proposal of the
new problem, they would be practicing creating problem frameworks to address gaps in
knowledge (i.e., the second step of the problem-solving process depicted in Fig. 1); and in
explicating how the proposed problem relates to the original, they would be practicing how to
articulate their confusion through the technical language they previously learned. Of course,
problems in course assignments are often chosen so that students practice specific skills, so this
flexibility in accepted solutions would have to be allowed for certain instructor-chosen
problems.

Problems in physics classes are often structured as Binstruction manual^ questions where
the complexity of the problem is mitigated through a step-by-step outline of its intermediary
parts. For each step, the student is asked to complete a specific task and each subsequent task
builds on the one which came before. Such problems are good for showing students how the
techniques they learn have larger applications in longer physics derivations or studying
systems outside the purview of the course, but such problems are also detrimental in that they
rarely convey the motivations for choosing the mediating steps and thus they lead students to
underestimate the difficulty in developing such steps for themselves. By reducing a difficult
problem to a simple series of steps, these instruction-manual questions belie the complexity of
the original problem and suggest that the detailed calculations the student is required to
perform, rather than the questions which set up such calculations, are the true work of the
problem.

Such precisely defined problems differ greatly from the partially defined (also called Bill-
structured) problems students often encounter outside their education. In Bthe structure of ill-
structured problems^ (1973), Simon provided a good description of the wider relevance of
partially defined problems:
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In general, the problems presented to the problem solvers by the world are best regarded as [ill-structured
problems]. They become [well-structured problems] only in the process of being prepared for the problem
solvers. It is not exaggerating much to say that there are no [well-structured problems;] only [ill-structured
problems] that have been formalized for problem solvers.

From (Fortus 2009), it is apparent that students with prior experience only solving
standard physics course problems are not able to solve problems requiring extensive
assumptions and with multiple possible solutions. In a study concerning problem
solving strategies for astronomy students (Shin et al. 2003), researchers noted that
partially defined problems required students to use case-based reasoning and apply
their previous experiences. Therefore, students without those experiences found these
partially defined problems too ambiguously defined to be soluble. Moreover, for
unfamiliar contexts, such partially defined problems required students to plan and
monitor their progress, metacognitive strategies not typically needed for problems with
less open solutions. Milbourne similarly found that integrating content-knowledge with
self-regulatory practices were necessary for advanced high school students to success-
fully tackling problems in their first research projects (Milbourne 2016). Also work
from the last decade (Ogilvie 2009) suggests that such partially defined problems can
lead to students engaging more deeply with the content of a course by forcing them
to employ qualitative analyses and outlining of sub-problems to solve problems rather
than superficial strategies like memorization and equation matching.

Therefore, to more completely represent the process of solving problems as they
exist in research (or generally beyond formal instruction), instructors should work
partially defined problems into a course. These partially defined problems are char-
acterized by allowing for multiple approaches and answer and thus are closer to short
essays than they are to the more mechanical derivations in a typical physics class.
Modern sources for such problems are numerous. Thompson’s Thinking Like a
Physicist (Thompson 1987) has a good collection of such problems for physics, and
XKCD creator Randall Munroe has assembled an extensive collection of answers to
seemingly absurd physics questions largely framed as partially defined problems
submitted by his readers (Munroe 2014).

Again, one must consider timing when assigning such problems. Students who have not
learned how to use their acquired knowledge to solve well-defined problems will not be
able to solve partially defined problems. As Fortus explained (Fortus 2009), the skills used
for solving well-defined problems are necessary (although not sufficient) for solving
partially defined ones. Thus, such partially defined problems could only reasonably be
assigned later in the course. For example, in the oscillations and waves course, the first
few weeks of the course were devoted to solving problems which were very explicit in
purpose and structure, so that students could tell what questions they were answering and
what techniques were relevant. But later in the course, I assigned a problem which did not
reference techniques or even provide an explicit question, but rather asked students to
analyze a physical model and use it to explain a classroom demonstration.

Also, there is a necessary comment about class size. These types of tasks work in situations
where the students-to-teaching staff ratio is small enough so that the careful grading such
assignments require is feasible. Since these problems allow students to submit a larger
spectrum of solutions than those associated with typical single-solution problems, graders will
have to devote more time to reviewing student solutions than is the case for more single-
solution problem solving tasks.
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7.2 Objections to Course Modifications

There is a straight forward objection to these modifications: The current model of physics
education has a very specific purpose which can be explained through Bloom’s taxonomy of
learning (Bloom and Engelhart 1956). Higher order knowledge—analyzing the various parts
of a subject, being able to synthesize new problems within the subject, and developing new
ways to understand the subject—is, of course, the laudable goal of any physics education, but
in order to get there the student must first proceed through the beginning stages of simple
recall, rudimentary understanding, and applications in well-defined contexts.

This claim is sensible, but it should lead us to ask why physics education stops short. That
education may begin with simple recall of basic concepts and equations and proceed towards
understanding the relationship between those elements, but it usually concludes with teaching
students to apply their gained knowledge to contexts which are externally prescribed and set.
But if the benefits of such an education really do extend beyond physics itself, then the
practices through which those benefits can best be reaped should be completely reflected in the
undergraduate education in problem solving.

The authors of Make It Stick (Brown et al. 2014) advocate a teaching philosophy which is
so sensible as to seem self-evident. The idea is that if teachers want students to perform in a
certain way in contexts outside their education (e.g., in students’ non-science careers or in their
research), teachers must eventually evolve the qualities of the students’ practice to coincide
with the qualities of their intended performance. If classrooms are any indication of how we
want students to ultimately apply their knowledge, it would appear that we want them to be
quite skilled at solving problems which are clearly worded and presented in a way that implies
a single solution. But, of course, what physics programs really want (or should want) is for
students to be able to intelligently contend with the unavoidable messiness of the problems
they will encounter after their education. Realizing this desire involves not only teaching
students the way we want them to practice, but also testing students in ways that incentivize
these methods of practice. Often if an assessment can be successfully navigated without
employing the higher-levels skills touted as important for learning, students will default to
the lower-level skills which at minimum ensure their favorable evaluation (Ramsden 1997).
Consequently, akin to the problem modifications suggested above, and as advocated in
Chapter 7 of (Bowden and Marton 2003), educators should strive to create assessments which
include problems that are open, not explicitly technical, and which are novel to the students.

8 Conclusion: a Problem Half-Solved

Polya’s How to Solve It (Polya 2014) is a text geared primarily towards learning how to solve
mathematics problems—or even more narrowly towards solving mathematics competition
problems—but it holds esteem as a general supplement to lessons on problem solving in many
technical domains and therefore can be used as model for how many such courses view
problem solving. In one of the early sections of the text, Polya begins an outline of the
problem-solving process by exhorting the necessity of first understanding the problem. He
writes, BIt is foolish to answer a question that you do not understand. It is sad to work for an
end that you do not desire.^

I think this is a good starting point for Polya’s purpose and a good lens through which to see
our own. When one has a problem, the fundamental issue is of course understanding, but what
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one is trying to understand or clarify is not specifically the problem itself but something
epistemically deeper which lies beyond the problem, a situation for which the stated problem is
merely a proxy or a convenient means for articulation.

For Schrödinger, the well-defined problem was BWhat is the energy spectrum of hydrogen
as computed from the wave equation?^ but what he was trying to understand was a correct and
conceptually motivated way to mathematically formulate the principles of quantummechanics.
For Feynman, the well-defined problem was BCan we represent a system of two quantum
particles coupled by an oscillator as an interaction between the particles themselves?^ but what
he was trying to understand was whether it was possible to correct the divergence problems in
quantum electrodynamics. In each case, the problem each physicist proposed served as a
concrete handle for an idea which was otherwise difficult to engage with. The issue with most
curricular answers to the problem of Bproblem-solving education^ is their failure to understand,
or, more generously incorporate, this fact of a situation beyond the problem, and their resulting
mischaracterization of the real process through which problems are developed and solved.

The early twentieth century education philosopher John Dewey once said (Dewey 1938, p.
108) BA problem well put is half solved.^ So is it with the problems which comprise most of a
physics education, and, as a result, students often learn only half the skills they need to be truly
effective problem solvers. Physics problems are primarily pedagogical in nature and may
consequently require simplifications and idealization of realistic analogs, but if these problems
are to effectively model the problem-solving process, they must model all aspects of that
process—recognition of a possible problem, problem formulation, and then problem solu-
tion—and not merely the aspects which are currently definitive of problem-solving ability.
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