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Structure of Knowledge in Physics

The theoretical results in physics are taken as valid not specifically because they are communicated and
accepted by authority figures, but because—in addition to being confirmed by our observations, as is true
in all scientific fields—they are logically and, specifically, mathematically consistent. It is the mathematical
consistency of these theories which largely defines what I call the “structure of physics” and it is this struc-
ture which allows the student to be able to develop and understand much of theoretical underpinnings of
the subject without recourse to any established authority1. In these notes we discuss this structure and why
it implies physics should be approached and learned with more deeper techniques than just memorization.

1 Model Building in the Lab
Imagine you’re a biology student who has acquired a solid understanding of calculus but is woefully under-
read in the history and understood science of biology. You make up (or, at least, try to make up) for these
deficiencies by being quite inventive and logical.

You’re working in a bacteriology lab for the summer. Your formal task is to answer some question about
the metabolic properties of a bacteria (which we call ‘bacteria α’), but you instead become intrigued by how
the bacteria are growing. Their colonies ensconced in nutrient plates seem to be expanding before your eyes.

(a) Bacterial colony at time t0 (b) Bacterial colony at time t0 + 1 hr

Figure 1: Bacterial growth in nutrient plates. The aggregate of pill shaped lines represents the bacteria
colony and the large circular border represents the outline of the nutrient plates in which the bacteria grow.

During the first hour, you observe the bacteria and measure the diameter of the roughly circular shape the
colony makes on the nutrient plate. You take these measurements at the start and at the end of the hour, and
you notice that the ratio between the final diameter d(t0 + 1 hr) and the initial diameter d(t0) is 1.411. You
do this again in the next hour and you find that the ratio of the diameters at the end and the beginning of
the hour is again 1.411. Given this (admittedly small) sample size, you conclude that the value of this ratio
is constant in time. Having mastered geometry and algebra, you recognize this ratio is, within an error,

√
2,

and hence you conclude d(t0 + 1 hr)/d(t0) =
√
2 independent of t0. You also recognize that if the diameters

1Assuming, of course, that said student had the necessary technical background, was able to ask the right questions, and knew
what assumptions to make, none of which is easy to obtain/acquire
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are related by a factor of
√
2, then the areasA at each point in time are related by a factor of 2. Encapsulating

your knowledge mathematically, you conclude

A(t0 + 1 hr)
A(t0)

= 2. (1)

You also know that whenever it takes a quantity a fixed amount of time to double in number, the growth
rate of the quantity must be proportional to the quantity itself (Think of compound interest for example).
Thus you decide to elevate your observations to the level of a “principle for bacterial growth”. You postulate

Principle of Bacteria Growth: If a colony of bacteria α is in a culture dish with sufficient nutri-
ents, the growth rate of the colony’s area is proportional to the area itself.

Initially satisfied with this formulation, you put down your pen and start heading out to an early lunch. But
your calculus knowledge pulls you back. Your newly formulated “principle of bacteria growth” is expressed
qualitatively, but its language suggests a quantitative formulation. Taking A(t) to be the area of the bacteria
colony at a time t and dA(t)/dt to be the growth rate of that area at that same time t, you realize your principle
of bacteria growth can be written mathematically as

Principle of Bacteria Growth (Mathematical Formulation): If a colony of bacteria α is in a cul-
ture dish with sufficient nutrients, then the area A of the colony evolves in time according to

dA(t)

dt
= kA(t), (2)

for some k of dimensions 1/time.

Eq.(2) seems like an improvement over the previous principle, however it contains an ambiguity in the in-
troduction of k. Of course the original principle also contained this ambiguity, but because of its qualitative
formulation the ambiguity was less apparent. Fortunately, you surmise that it should be possible to deter-
mine the value of k by making proper use of your previous. Namely, given Eq.(1), you want to know what
the theory represented by Eq.(2) predicts for how long it takes the area of the bacterial colony to double; this
prediction will in turn constrain the value of k.

Again, given your calculus knowledge, you recognize that the general solution to Eq.(2), is

A(t) = A0e
kt, (3)

where A0 is the area of the colony at the chosen initial time t = 0. By Eq.(3), after a doubling time of td, the
area of the colony must be 2A0. Thus you find

2 =
A(td)

A0
=
A0e

ktd

A0
= ektd . (4)

Taking the far LHS and the far RHS and solving k gives you k = ln 2/td. With your previous observation
that td = 1 hr, you then find

k = ln 2 hr−1. (5)

With this result, Eq.(2) is mathematically precise and specific to our system of study.

You now want to see what else you can do with this principle. Knowing that the bacteria are in a finite
circular plate of diameter 10 cm, you realize there is a constraint in this setup on how much the bacteria can
grow according to Eq.(2). You decide to test this by predicting how long it would take the bacteria (which
currently comprises an area with diameter of 3 cm) to reach the limits of the culture dish. Given Eq.(3) and
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Eq.(5), you predict it should take a time

tf =
1

k
ln
Af

A0
≈ 3.5 hr, (6)

where Af/A0 = (10/3)2, to reach the limits of the dish. You look at your watch to check the time and finally
decide to leave the lab and go on a very long lunch. When you return...

Well you (reader) get the idea. This example was mean to illustrate the dual processes of induction and de-
duction and how they allow us to mathematically model and make predictions about the world. Moreover,
although this example doesn’t at all deal with physics, through its foundation in mathematical modeling it
provides a conceptually simple framework by which to develop a structural understanding of physics.

2 Structure of Physics
• Induction and Deduction: Induction refers to the process of developing or postulating general laws

based on specific observations. Deduction refers to the process of deriving specific predictions from
general laws.

Induction and deduction are both often seen as fundamental to the progress of science, and although
there are arguments for why the induction/deduction dual does not characterize all of science, it does
largely describe how physicists formulate theories. In the previous section, a theory of bacterial growth
was formulated by first observing the growth of bacteria, extrapolating a principle from the properties
of this growth (induction), and then using the principle to make a testable prediction (deduction). We
depict the cyclical nature of this process below.

Figure 2: The cyclical relationship between the observations which motivate the development of principles
which are in turn used to obtain predictions which are checked against more observations.

It is important to take note of this structure because it largely characterizes how physicists in all dis-
ciplines formulate theories. For example, Newton’s laws are principles (gleaned from observations of
physical phenomena) which produce predictions which can be compared with other observations. We
should mention that this process in practice is rarely ever this clean, and the physicist often jumps be-
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tween stages as he works through trial-and-error to find the proper principles or predictions by which
to model a phenomena.

Also, sometimes physicists don’t directly use observations to develop physical principles but rely on
abstracted intuition. Einstein’s formulations of Special and General Relativity began with such an in-
tuition [1].

Finally, the principles of one theory can exist as the predictions of another, and so the division between
what is a principle and what is a prediction is not always clear. For example, Kepler’s laws can be seen
either as the principles of pre-Newtonian astronomy or the predictions of Newtonian astronomy, and
Newton’s law of gravitation could be seen as a principle of Newtonian gravitation or as a prediction
of Einstein’s theory of General Relativity.

• Principles and Predictions: This example was also meant to illustrate the difference (with regard to a
hierarchy of importance) between principles and predictions. Principles are taken as assumptions and
are often used as the starting points of a theory. From these starting points one extends the theory in
various directions to obtain predictions (see Fig. 3 below). In this way we consider principles as more
fundamental than predictions, but understanding a theory often amounts to understanding both the
principles and predictions in addition to the ways they are connected.

Figure 3: Predictions in a theory extend from and are less “fundamental” than the principles. This does not
mean predictions are less important; only that they are not the deductive starting point of the theory. In this
diagram the arrows stand for a mathematical derivation.

We can illustrate the relationship between predictions and principles with a non-physics related ex-
ample. Consider the following valid logical argument:

1. A is true.
2. If A is true, then B is true.
3. B is true

In this argument, statement 1 serves the role of a premise which means it is not derived from any other
statement; to consider the validity of this argument, we simply take the premise as true. Similarly, in
physics, physical principles and laws are taken as true without any valid logical justification2.

Statement 3 is the conclusion of this logical argument since it is deduced from the premise. The con-
clusion of a logical argument is analogous to a physical prediction or derived result in physics because

2Again, there are sometimes exceptions to this if we look at the relationship between some subjects in physics
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these physical predictions are deduced from physical principles.

What role does statement 2 play? In the argument, it acts as a logical connection between statements
1 and 3 and thus requires us to accept the truth of statement 3 if we accept the truth of statement 1.
In physics, mathematics–and more specifically the logic implied by the mathematical framework of a
physical theory–serves the role of statement 2 as it is used to derived predictions from principles.

• The Role of Mathematics: Some people state that mathematics is the language of physics to em-
phasize that, in a way very similar to how written language can be used to express qualitative ideas,
mathematics can be used to express ideas about change, geometry, and structure—ideas which are
often relevant to the study of physical systems. However, in physics, mathematics is more than just a
symbolic method for expressing physical ideas; it also serves to embed these idea in a sophisticated
logical framework which in turn allows these ideas to be connected to other ideas.

We see this most clearly in the way physical principles expressed mathematically allow us to derive
predictions for a physical theory. In Fig. 3, the arrows represent a mathematical derivation in the
physical theory. In the (non-physics) example in the first section, by using calculus to mathematically
express our “principle of bacterial growth” we were able to predict how long it should take the bacteria
to overflow the container. More generally, the mathematics we use to make predictions in a theory vary
by subject. To illustrate this relationship, in the table below we list a few physical theories along with
some of their associated physical predictions and the mathematical frameworks used to derived them.

Table 1: Physical Theories: Principles and the Mathematics used to obtain Predictions

Principles Mathematics Predictions/Results

Classical Mechanics

Newton’s Laws;
Principle of Least
Action; Newton’s

Law of Gravitation

Calculus;
Functional
Calculus;

Differential
Equations

Period of
Pendulum; Conic

Section Orbits

Electromagnetism
Maxwell’s

Equations; Lorentz
Force Law

Vector Calculus;
Partial Differential

Equations

Electric field of
General

Conductor; Energy
Radiated by

Electric Charge

Quantum Mechanics

Schrödinger
Equation;

Definition of State
Kets and Hilbert

Space;
Interpretation

Calculus; Partial
Differential

Equations; Linear
Algebra

Energy Levels of
Hydrogen Atom;

Van der Waals
forces

I want to emphasize that the principles listed in this table are not absolute principles in all areas of
physics, and instead there are some subjects for which these principles exist as predictions. Indeed
much of the work considered to be foundational in physics, (for example, the work done here at Har-
vard in The Center for Fundamental Laws of Nature) consists of deriving current principles from even
more fundamental ones.
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3 Considering and Learning Physics
This discussion of the structure of physics is important because it motivates a particular way of studying
and engaging with the subject. In particular, it should discourage an unfortunately typical way of learning
the subject and encourage a way which is more natural and in the long run more useful.

In some physics classes, the main results which define a physics subject are sometimes employed and
practiced in a disconnected manner which suggests that these results were found and hence should be ap-
plied independently of one another. A standard example is “The Big Four (or Five)”x equations of kine-
matics which are presented as distinct. However, these kinematic equation can all naturally be subsumed
into the equation for constant acceleration. This is general in physics; all results in a physical theory (outside
the physical principles and assumptions) are derived from and hence connected to other results. We depict
this perspective on physics in Fig. 4

(a) Taking ideas and equations as dis-
tinct and learning them as such. Leads to
memorization and an inability to extend
knowledge.

(b) Understanding connections between
ideas and equations. Allows for less
memorization and develops skills to ex-
tend knowledge.

Figure 4: Two types of understanding

Fig. 4 is meant to suggest that what you learn in a subject becomes more useful when you understand
how topics and ideas are connected. One benefit of this way of learning is that if you forget something in a
subject (e.g., imagine if a node in Fig. 4 was erased), then since you understand how results in the subject
are connected, you can rederive what you have forgotten from all that you still know.

To put it plainly: only memorizing equations is an inefficient way to learn a subject which has as much
manifest logical structure as physics does. Instead, efficiently learning physics entails getting a sense of the
structure of the subject and of how theorems and physical results are derived and are related to one another.

Therefore understanding in physics is not merely represented by what equations or ideas you know,
but more truly in what you know about the connections between these equations and ideas. It is only by
understanding these existing connections that you will ever have the knowledge and skills to move beyond
them toward a comprehension of something you have never before seen.
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