
Mobolaji Williams Physics S-10 Section Notes: July 17, 2016

Checking Your Work:

Units, Limiting Cases, and Mathematics as Metropolis

As part of any physics class you spend a lot of time answering questions, deriving physical results, and
predicting the consequences of experiments both real and imagined. In short you do a lot of analytical
work and thereby obtain equations which supposedly describe reality. But how can you be sure? Well, to
be precise, it is impossible (even with apparent experimental confirmation) to be absolutely sure that our
physical theories correspond to something truly fundamental about our world, but we can often perform
simple logical checks without a laboratory to ensure that the associated results are not obviously wrong.

In these notes we discuss two useful checks in this direction in addition to a more general heuristic
for checking one’s work. The specific definitions of these checks are given here, but you won’t be missing
anything if you first look at the example in the next section.

Units/Dimensions Check: Since all physical quantities have units and dimensions1 any ex-
pression which represents a physical quantity must have the same units/dimensions as that
quantity. This check uses this fact to ensure that an analytic expression has the correct physical
units/dimensions. Taking “[A]” to stand for the units2 of A we have,

If f(a1, . . . , aN ) represents the physical quantity F , then [F ] = [f(a1, . . . , aN )] (1)

Limiting Case Check: This check rests on the idea that the mathematical result modeling a
physical phenomena should have analytical properties which mirror the qualitative properties
of the phenomena. Expressed mathematically, if we have an analytic function f (with parameters
a1, . . . , aN which represents a physical quantity F , then we must have

lim
ai→A

f(a1, . . . , aN ) = What we expect for F when ai = A. (2)

If either of these checks fail (i.e., the expected limiting cases are not satisfied or [F ] 6= [f ]), then we know our
result is incorrect.

1 Example Application
Both of these techniques are best illustrated through examples. We’ll consider one example here but there
are many more in chapter 1 of [1] which can be found in the Physics Library on the fourth floor of Jefferson.
We begin with the following problem statement:

A time dependent force F (t) = F0e
−bt acts in the x direction on a mass m. The particle has an

initial position x0 and an initial velocity of ẋ0. The particle’s position x(t) is

x(t) = x0 + ẋ0t+
F0

bm
t+

F0

b2m
(e−bt − 1). (3)

1Dimensions are either Mass, Length, Time (or Charge). Units refer to quantities like Newton’s, Joules, etc.
2In physics, [A] typically stands for the dimension of A, but we’ll only be considering units here so we appropriate this notation.
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1. Units Check: Given that F0 has the units of force, b has the units of s−1, and m has the units
of kg, check that x(t) has the correct units.

2. Limiting Cases Check: Consider x(t) in the limits of:

(a) F0 → 0

(b) m→∞
(c) b→∞

Do these limits of x(t) yield the expected analytic expressions?

1.1 Units Check
Recall that units refer to what is typically known as SI units (quantities like Newtons, Joule’s, Watts, etc.)
while dimensions refer to the fundamental quantities length, mass, and time. Units can be expressed in
terms of dimensions so we can check either the units or the dimensions of an equation; both must be con-
sistent across the equality for the equation to make sense.

We will consider units here because that is what we typically use to express the physical nature of quan-
tities. We are trying to check the units of the equation

x(t) = x0 + ẋ0t+
F0

bm
t+

F0

b2m
(e−bt − 1). (4)

The equation represents the position of a particle, and position has units of meters so for the left hand side
of the equation we have [

x(t)
]
= m. (5)

This unit expression must be matched on the right hand side of the equation. Namely, we must find[
x0 + ẋ0t+

F0

bm
t+

F0

b2m
(e−bt − 1)

]
= m (6)

Transcendental functions like ex have no units, so demonstrating this unit equivalence amounts to showing
that the quantities

x0 , ẋ0t ,
F0

bm
t ,

F0

b2m
(7)

have units of meters.
The first quantity represents initial position, so the units are automatically manifest:[

x0

]
= m. (8)

The next quantity is a velocity multiplied by a time, so we have[
ẋ0t
]
=
[
ẋ0

]
×
[
t
]
=

m
s × s = m, (9)

as we expect. By Newtons’ Second Law, force must have the same units as mass times acceleration. Thus
the units of F0 are kg·m/s2. Also, because the argument of the exponential e−bt must not have any units
(i.e., transcendental functions must be functions of real numbers alone), the units of b are s−1. The units of
the final two terms in Eq.(3) are then[

F0t/bm
]
=
[
F0

]
×
[
t
]
×
[1
b

]
×
[ 1
m

]
= kg m

s2 × s× 1

s−1 ×
1

kg = m (10)
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[
F0/b

2m
]
=
[
F0

]
×
[ 1
b2

]
×
[ 1
m

]
= kg m

s2 ×
1

s−2 ×
1

kg = m (11)

In all we find Eq.(3) has the correct units.

1.2 Limiting Cases
To consider the limiting cases we apply Eq.(2) to investigate the various limits listed in the problem state-
ment.

1. F0 → 0: If we take F0 → 0 then the force applied to the particle goes to zero, and we expect the particle
to move with constant velocity in time. Taking this limit for Eq.(3) this expectation is confirmed.

lim
F0→0

x(t) = lim
F0→0

[
x0 + ẋ0t+

F0

bm
t+

F0

b2m
(e−bt − 1)

]
= x0 + ẋ0t (12)

2. m → ∞: If we take the particle’s mass m to infinity, then we expect a finite force F (t) to not change
the particle’s velocity. Essentially, the particle would appear to not be acted upon a force at all, and
we would again expect the particle to move with constant velocity in time. We indeed find this is the
case:

lim
m→∞

x(t) = lim
F0→0

[
x0 + ẋ0t+

F0

bm
t+

F0

b2m
(e−bt − 1)

]
= x0 + ẋ0t (13)

3. b → 0: In the function F (t) = F0e
−bt the parameter b acts as a time constant for the decaying-in-time

force. Specifically τ = 1/b is the amount of time it takes the force to decay to 1/e of its initial value. If
b → 0 then this decay time τ goes to infinity and the force never decays in time. In other words, it is
simply a constant force. As a constant force, it gives the particle a constant acceleration and we expect
the position as a function of time to have the form

x(t)
?
= x0 + ẋ0t+

F0

2m
t2. (14)

To check this result we focus on the final two terms in Eq.(3). Taking the limit and making use of the
Taylor expansion of the exponential we find

lim
b→0

F0

bm
t+

F0

b2m
(e−bt − 1) = lim

b→0

F0

bm
t+

F0

b2m

(
−bt+ 1

2b
2t2 +O(b3)

)
= lim

b→0

F0

bm
t− F0

bm
t+

F0

m
t 12 t

2 +O(b)

=
F0

2m
t2, (15)

and so Eq.(14) is established. We note we could have obtained this result without an explicit Taylor
expansion by applying L’hopital’s rule twice.

As a logical point, although Eq.(3) is indeed correct, whenever we apply a limiting case or dimensions check
and find that both checks are consistent, at most what we can say is that our checks prove the result is not
definitely wrong (instead of proving that the result is definitely correct). Namely, it is possible for an expression
to pass limiting cases and dimensions check and not be the correct result for a physical system.
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The Takeaway: When you obtain a final equation for a problem, check that both the units of the
problem and limiting cases are what you expect. Given the generality of these two checks, they
can be used in any context which involves mathematical modeling of some physical phenomena.

2 Mathematics as Metropolis
All fields of mathematics are like well-connected cities in which there is often more than one way to get
from one point to another. Physics, which employs mathematics as an integral language, greatly benefits
from this connectivity. You all saw an example of this when the Lagrangian and Hamiltonian formulations of
mechanics were presented this week. The three approaches to classical mechanics you’ve seen so far (i.e., the
Newtonian, Lagrangian, and Hamiltonian approahces) reveal that distinct, but related, physical principles
can be used to derive the dynamics of a system, and each approach uniquely informs our understanding of
the system.

Figure 1: Various Approaches to Mechanics: The three approaches to mechanics we’ve learned so far all
allow us to obtain the dynamical equations of a system (which in turn leads to the same kinematics), but
each give us unique ways to characterize and describe that dynamics.

Less macroscopically, even within a single physical formulation, it’s possible to make use of physics’s
intrinsic connectivity by searching for multiple ways to solve a problem. This is useful because when you
have two different ways of approaching the same problem, it’s like you have two different people working
on the problem, and if both approaches are logically and physically correct they should each result in the
same answer.
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Figure 2: Within Newtonian Mechanics we can define the dynamics of a system according to Newton’s
Second Law or energy conservation, the latter of which can be seen as a consequence of the former.

2.1 Multiple Approaches to a Problem: Example
As an example of considering multiple approaches to a problem, we’ll look at something which should
be familiar: vertical motion in a gravitational field. For such a system, energy is conserved and thus it is
possible to describe the dynamics by energy conservation as well as by Newton’s Second Law.

Specifically, we will show that both of these dynamical perspectives lead to the same kinematical equa-
tions for the vertical motion of a mass m in a gravitational field.

2.1.1 First Approach: Newton’s Second Law

Using Newton’s Second Law, we begin with the dynamical equation

mz̈(t) = Fext, z = −mg (16)

where z(t) defines the vertical position of the particle, m is the mass, and g is the gravitational acceleration.
To find the kinematical equation z(t) describing the particle’s motion, the standard procedure is to divide by
m and integrate this equation twice in time. For the first integration, we have∫ t

0

dt′ z̈(t′) =

∫ t

0

dt′
Fext, z

m

ż(t′)
∣∣∣t
0
= −

∫ t

0

dt′ g

ż(t)− ż0 = −gt. (17)

And for the second integration, we have∫ t

0

dt′ż(t′) =

∫ t

0

dt′ (ż0 − gt′)

z(t′)
∣∣∣t
0
=

(
ż0t−

1

2
gt′2
) ∣∣∣t

0

z(t)− z0 = ż0t−
1

2
gt2. (18)

Which is the desired result.
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2.1.2 Second Approach: Energy Conservation

We could have derived this result using conservation of energy as well. For such a system, conservation of
energy requires that the total mechanical energy E0 remains the same throughout the mass’s trajectory:

E0 =
1

2
mż(t)2 +mgz(t) =

1

2
mż20 +mgz0 (19)

where ż0 and z0 are the initial velocity and position respectively. Solving for ż in the first equality in Eq.(19),
we find

ż(t) =
dz

dt
=
√

2(E0/m− gz). (20)

This equation can be rearranged and integrated to obtain∫ t

0

dt′ =

∫ z(t)

z0

dz′
1√

2(E0/m− gz′)
. (21)

The integral on the left hand side is just t. The integral on the right hand side has a straight forward result
which can of course be checked by differentiation:∫ z(t)

z0

dz′
1√

2(E0/m− gz′)
= −1

g

√
2(E0/m− gz′)

∣∣∣z(t)
z0

. (22)

We therefore find for Eq.(21),

−gt =
√

2(E0/m− gz(t))−
√
2(E0/m− gz0)

−gt =
√

2(E0/m− gz(t))−
√
2(ż20/2)

ż0 − gt =
√
2(E0/m− gz(t)). (23)

Squaring both sides of this expression and using E0/m = gz0 +
1
2 ż

2
0 , we find

ż20 − 2gż0gt+ g2t2 = 2gz0 + ż20 − 2gz(t). (24)

Finally, solving for z(t) gives us

z(t) = − 1

2g

(
− 2gz0 − ż20 + ż20 − 2gżgt+ g2t2

)
= z0 + ż0t−

1

2
gt2 (25)

as expected.

The Takeaway: When you solve a problem using one physical or mathematical approach, try to
think of other approaches both to check your answer and to obtain a different perspective on the
problem.
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