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Boltzmann Machines

Boltzmann Machines (def): Class of models 
that allow you to find patterns in binary data 
by representing the data as state vectors in a 
statistical physics problem. 
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Boltzmann Machine Model 

bi :

Wij : Roughly how correlated 
column  is with column i j

Roughly how biased column 
 is to positive valuesi

Inference
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Boltzmann Machines - Example

LotR
Harry 
Potter Alien Moana Get 

Out
MIB

Bob Yes Yes Yes NoNo No

Alice Yes Yes YesNo No No

Carl Yes Yes YesNo No No

Setup: Say we have a table that lists 
movies watched and whether a 
viewer liked them or not

Answer (From Boltzmann Machines): 

1. Represent current user preferences as 

vectors with binary values

2. Assume the values have a particular 

interaction weight with each other and a 

particular bias in a certain direction; Use 

to define probability

3. Find weights and biases most likely to 

produce data

4. Use the learned weights and biases to 

predict probability for that viewer likes 

unseen movies

David ? Yes ?? Yes ?
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Question: 

If we have a new viewer David and we 
know that he likes “Alien” and “Moana”, 
(but we don’t know any other movies 
he’s seen), how can we recommend 
movies to him?



Boltzmann Machines - Example

Question: 

If we have a new viewer David and we 
know that he likes “Alien” and “Moana”, 
(but we don’t know any other movies 
he’s seen), how can we recommend 
movies to him?

Setup: Say we have a table that lists 
movies watched and whether a 
viewer liked them or not

1. Represent current user 
preferences as vectors 
with binary values

2. Assume the values have a 
particular interaction 
weight with each other and 
a particular bias in a certain 
direction; Use to define 
probability

⃗sA = [1, 0, 0, 1, 1, 0]

⃗sB = [1, 1, 1, 0, 0, 0]

⃗sC = [1, 0, 0, 1, 0, 1]

⃗s = [s1, s2, s3, s4, s5, s6]

E( ⃗s ) = −
N

∑
i,j=1

siWijsj −
N

∑
i=1

bisi

Weight: Defines 
tendency for both 
 and  to both be 

“on”
i j

Bias: Defines tendency 
for  to be “on” 
independent of other 
values

i

Z =
1

∑
s1=0

⋯
1

∑
sN=0

exp(−E({si})P( ⃗s ) = exp(−E( ⃗s ))/Z

Probability to see 
data row : ⃗s

where In Statistical Physics, this is 
the “Boltzmann Distribution”
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Boltzmann Machines - Example

Question: 

If we have a new viewer David and we 
know that he likes “Alien” and “Moana”, 
(but we don’t know any other movies 
he’s seen), how can we recommend 
movies to him?

Setup: Say we have a table that lists 
movies watched and whether a 
viewer liked them or not

⃗sA = [1, 0, 0, 1, 1, 0]

⃗sB = [1, 1, 1, 0, 0, 0]

⃗sC = [1, 0, 0, 1, 0, 1]

1. Represent current user 
preferences as vectors 
with binary values

2. Assume the values have a 
particular interaction 
weight with each other and 
a particular bias in a certain 
direction; Use to define 
probability

E( ⃗s ) = −
N

∑
i, j=1

siWijsj −
N

∑
i=1

bisi

Z =
1

∑
s1=0

⋯
1

∑
sN=0

exp(−E({si})

P( ⃗s ) = exp(−E( ⃗s ))/Z

3. Find weights and biases 
most likely to produce data

Likelihood of data is 

M

∏
α=1

P( ⃗sα)

α : denotes data row

(  is number of rows)M

What  and  
maximize this 
likelihood?

Wij bi

5

Find the answer 
with gradient 
ascent!



Gradient Descent Review

x

f(x)

f′￼(x0)

For a function , how can we numerically 
find the  that maximizes ?

f(x)
x f(x)

General Gradient Ascent Algorithm

1. Choose random x0

2. Compute f′￼(x0)

3. Compute new value x1 = x0 + λ f′￼(x0)

4. Return to 2. and iterate until convergence

learning rate

x0x1

For the Boltzmann Machine

1. Initialize  and  randomly{Wij} {bi}

ln ℒ =
1
M

M

∑
α=1

ln P( ⃗sα)

2. Computing derivatives 

* Maximizing  is 
equivalent to maximizing 

c1 ln f (x)
f (x)

∂
∂Wij

ln ℒ = −
1
M

M

∑
α=1

N

∑
i, j

sα
i sα

j − ∑
{si}

P( ⃗s )sisj

∂
∂bi

ln ℒ = −
1
M

M

∑
α=1

N

∑
i

sα
i − ∑

{si}

P( ⃗s )si = − (⟨si⟩data − ⟨si⟩model)

= − (⟨sisj⟩data − ⟨sisj⟩model)
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Gradient Ascent for Boltzmann Machines

Gradient Ascent Algorithm for the 
Boltzmann Machine

1. Initialize  and  randomly{Wij} {bi}

ln ℒ =
1
M

M

∑
α=1

ln P( ⃗sα)

2. Compute derivatives 

∂
∂bi

ln ℒ = − (⟨si⟩data − ⟨si⟩model)

∂
∂Wij

ln ℒ = − (⟨sisj⟩data − ⟨sisj⟩model)

4. Iterate until convergence

But there’s a problem!

Computing the expectation 
values for the model requires a 
summation over all  states2N

s6

s1

s2

s3

s4

s5

Sum over  
for 

si = {0,1}
i = 1,…, N

This is where Restricted Boltzmann Machines come in  

3. Increment weights 
and biases

Wij → Wij + λ
∂

∂Wij
ln ℒ

bi → bi + λ
∂

∂bi
ln ℒ
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This makes training the 
Boltzmann Machine 
computationally expensive !



Boltzmann Machines vs. Restricted Boltzmann Machines

Boltzmann Machine Restricted Boltzmann Machine

s6

s1

s2

s3

s4

s5

In a general Boltzmann 
Machine all of the visible units 
are connected to each other

(Visible units 
represent the data)

v6v1 v2 v3 v4 v5

In a Restricted Boltzmann Machine 
the visible units only connect to 
hidden units. These hidden units 
are not associated with the data

h3h1 h2

Visible units

Hidden units
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Restricted Boltzmann Machines

Restricted Boltzmann Machine

In a Restricted Boltzmann Machine 
the visible units only connect to 
hidden units. These hidden units 
are not associated with the data

v6v1 v2 v3 v4 v5

h3h1 h2

The visible units are independent of each 
other given the hidden units and vice versa. 

The Energy Function 

Probability 

E( ⃗v, h⃗) = −
N

∑
i=1

L

∑
j=1

viWijhj −
N

∑
i=1

bivi −
L

∑
j=1

cjhj

Z = ∑⃗
v

∑⃗
h

exp(−E( ⃗v, h⃗)

P( ⃗v, h⃗) = exp(−E( ⃗v, h⃗))/Z

where

In particular: The probability that a 
visible element is activated given a 
hidden vector is simple to write (as 
is the converse) P(vi = 1 | h⃗) =

1

1 + e−(bi+∑j=1 Wijhj)
= σ(bi + ∑

j=1

Wijhj)

P(hj = 1 | ⃗v) =
1

1 + e−(cj+∑i=1 Wijvi)
= σ(cj + ∑

i=1

Wijvi)
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Training Restricted Boltzmann Machines

Restricted Boltzmann Machine

v6v1 v2 v3 v4 v5

h3h1 h2

We train restricted Boltzmann machines in a 
way similar to how we train Boltzmann 
machines

The Energy Function 

E( ⃗v, h⃗) = −
N

∑
i=1

L

∑
j=1

viWijhj −
N

∑
i=1

bivi −
L

∑
j=1

cjhj

We want to find the ,  and  that maximize 

, except now this probability isn’t uniquely 
determined by the data (since  is hidden)

{Wij} {bi} {cj}
P( ⃗v, h⃗)

h⃗

Wij → Wij + λ
∂

∂Wij
ln ℒ

bi → bi + λ
∂

∂bi
ln ℒ

cj → cj + λ
∂

∂cj
ln ℒ

∂
∂bi

ln ℒ = − (⟨vi⟩data − ⟨vi⟩model)

∂
∂Wij

ln ℒ = − (⟨vihj⟩data − ⟨vihj⟩model)

∂
∂cj

ln ℒ = − (⟨hj⟩data − ⟨hj⟩model)

where

Presuming  was not hidden, we would 
compute the weight and bias updates as 

h⃗
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Training Restricted Boltzmann Machines

Restricted Boltzmann Machine

∂
∂bi

ln ℒ = − (⟨vi⟩data − ⟨vi⟩model)

∂
∂Wij

ln ℒ = − (⟨vihj⟩data − ⟨vihj⟩model)Wij → Wij + λ
∂

∂Wij
ln ℒ

bi → bi + λ
∂

∂bi
ln ℒ

∂
∂cj

ln ℒ = − (⟨hj⟩data − ⟨hj⟩model)cj → cj + λ
∂

∂cj
ln ℒ

where

We can’t determine hidden 
states directly from the data

So we sample them given our visible states

P(hj = 1 | ⃗v(0)) → h⃗(0)

P(vi = 1 | h⃗(0)) → ⃗v(1)

P(hj = 1 | ⃗v(1)) → h⃗(1)
P(hj = 1 | ⃗v(k)) → h⃗(k)

⃗v(k)⃗v(0)

(Initial data vector)
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P(vi = 1 | h⃗) =
1

1 + e−(bi+∑j=1 Wijhj)
= σ(bi + ∑

j=1

Wijhj)

P(hj = 1 | ⃗v) =
1

1 + e−(cj+∑i=1 Wijvi)
= σ(cj + ∑

i=1

Wijvi)



Gibbs Sampling and Contrastive Divergence

Restricted Boltzmann Machine

Sampling our hidden states and then visible 
states and then hidden states again (and so 
on) in this way is called Gibbs Sampling

We cut this procedure off at a certain number ( ) of 
iterations, and use it to estimate our expectation values 

k

∂
∂bi

ln ℒ = − (⟨vi⟩data − ⟨vi⟩model)

∂
∂Wij

ln ℒ = − (⟨vihj⟩data − ⟨vihj⟩model)

∂
∂cj

ln ℒ = − (⟨hj⟩data − ⟨hj⟩model)

→ − (v(0)
i p(hj = 1 | ⃗v(0)) − v(k)

i p(hj = 1 | ⃗v(k)))

→ − (v(0)
i − v(k)

i )
→ − (p(hj = 1 | ⃗v(0)) − p(hj = 1 | ⃗v(k)))

This procedure is termed 
Contrastive Divergence

⃗v(0)

P(hj = 1 | ⃗v(0)) → h⃗(0)

P(vi = 1 | h⃗(0)) → ⃗v(1)

P(hj = 1 | ⃗v(1)) → h⃗(1)
P(hj = 1 | ⃗v(k)) → h⃗(k)

⃗v(k)
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Contrastive Divergence Summary

Restricted Boltzmann Machine

Wij → Wij − λ (v(0)
i p(hj = 1 | ⃗v(0)) − v(k)

i p(hj = 1 | ⃗v(k)))
bi → bi − λ (v(0)

i − v(k)
i )

cj → cj − λ (p(hj = 1 | ⃗v(0)) − p(hj = 1 | ⃗v(k)))

⃗v(0)

P(hj = 1 | ⃗v(0)) → h⃗(0)

P(vi = 1 | h⃗(0)) → ⃗v(1)

P(hj = 1 | ⃗v(1)) → h⃗(1)
P(hj = 1 | ⃗v(k)) → h⃗(k)

⃗v(k)

After many iterations of training, 
we have the weights and biases 
that make our data most likely.  

The hidden states function as a 
condensed representation of the 
visible states

Contrastive Divergence Algorithm

What can we do with this trained 
model? 

(Initial data vector)

“D
ra

ma”

“S
ci-

Fi”

“F
an

tas
y”

Lo
tR

Harr
y 

Po
tte

r
Alie

n
MIBGet 

O
utMoa

na
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Back to Movie Reviews

Restricted Boltzmann Machine
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Question: 

If we have a new viewer David and we 
know that he likes “Alien” and “Moana”, 
(but we don’t know any other movies 
he’s seen), how can we recommend 
movies to him?



Back to Movie Reviews

Restricted Boltzmann Machine

Train the RBM on the 
given data set

⃗vA = [1, 0, 0, 1, 1, 0]

⃗vB = [1, 1, 1, 0, 0, 0]

⃗vC = [1, 0, 0, 1, 0, 1]

⃗vD = [−1, − 1, 1, 1, − 1, − 1]

Define the unknown vector 
(with -1 for missing values)

(*Not sure why -1 is used for missing values)

Predict value of hidden 
state p(hj = 1 | ⃗vD) → h⃗

Use predicted hidden state 
to predict a new visible 
state p(vi = 1 | h⃗) → ⃗v

1

23

“D
ra

ma”

“S
ci-

Fi”

“F
an

tas
y”

1 −1 −11−1−1

Lo
tR

Harr
y 

Po
tte

r
Alie

n
MIBGet 

O
utMoa

na

1

15

10 0
2

(Predicted 
Movie 
Preferences)



Back to Movie Reviews

Restricted Boltzmann Machine

Train the RBM on the 
given data set

⃗vA = [1, 0, 0, 1, 1, 0]

⃗vB = [1, 1, 1, 0, 0, 0]

⃗vC = [1, 0, 0, 1, 0, 1]

⃗vD = [−1, − 1, 1, 1, − 1, − 1]

Define the unknown vector 
(with -1 for missing values)

(*Not sure why -1 is used for missing values)

Predict value of hidden 
state p(hj = 1 | ⃗vD) → h⃗

Use predicted hidden state 
to predict a new visible 
state p(vi = 1 | h⃗) → ⃗v

1

23

2
10 0

“D
ra

ma”

“S
ci-

Fi”

“F
an

tas
y”

Lo
tR

Harr
y 

Po
tte

r
Alie

n
MIBGet 

O
utMoa

na

10 0
3

1 1 1 1 0 0

Lo
tR

Harr
y 

Po
tte

r
Alie

n
MIBGet 

O
utMoa

na

(Predicted 
Movie 
Preferences)
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General Uses of Restricted Boltzmann Machines

Finding Correlations in Data
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General Uses of Restricted Boltzmann Machines
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Besides being used for recommender 
systems, RBMs are also useful for

Dimensionality reduction

Factor Analysis

With trained  we can identify factors that separate 
our data elements  

{Wij}

With trained , , and , we can compute the 

hidden state  for each visible state , and use the 
hidden state as a feature vector for another model 

{Wij} {bi} {cj}
h⃗ ⃗v

v6v1 v2 v3 v4 v5

h3h1 h2

Dimensionally 
Reduced Features

(http://blog.echen.me/2011/07/18/introduction-
to-restricted-boltzmann-machines/)

Example

(Weights)

(biases)

Most people like 
LotR3

Most people 
dislike Glitter

Hidden 1 is highly 
activated for 
“Oscar Winners”

Hidden 2 is highly 
activated for 
“Fantasy Films”

http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/
http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/
http://blog.echen.me/2011/07/18/introduction-to-restricted-boltzmann-machines/


Applications of RBMs to Jellyfish 

Applications to Jellyfish
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The simplest RBMs require binary-valued data 
which makes most of our continuous valued data 
(e.g., metrics), unusable for RBMs without data 
processing  

But we establish cutoffs to define 
“ones” and “zeros” for above and 
below average values

PRs Issues 
Resolved

Coding 
days

Confl. 
edits

Adam

Beth

Cathy

Diana

1

0

1

0

0

1

0

0

0

1

1

0

1

0

0

1

We can then use RBMs to
- make predictions about missing metric data 
- find condensed representations of metric data

PRs Issues 
Resolved

Coding 
days

Confl. 
edits

Adam

Beth

Cathy

Diana

5

2

7

1

3

8

3

3

2.5

5.1

4.3

3

10

0

5

15

(Person Metrics)



Applications of RBMs to Jellyfish 

Applications to Jellyfish
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9am

Adam

Beth

Cathy

Diana

1

0

1

0

0

1

0

0

0

1

1

0

10am 11am 12pm

1 or 0 depending on if person 
made a commit in that hour

1

0

0

1

(Commit Activity by Time)

We can use RBMs to find condensed 
representation of coding time data. Could allow 
us to determine general trends for when people 
are coding

9am 10am 11am 8pm

Mid-afternoon 
coders

Late night 
coders

Early morning 
coders

(For Example)



End
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