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Setup of Problem: Say that we have a data set consisting of N points in feature space
denoted xi ∈ RM and their corresponding one-hot-encoded classes yi,α ∈ {0, 1} where
α = 1, . . . , C for C classes.

The principal task of machine learning is to generate a function p̂(α|x) (i.e., the prob-
ability that a data point with feature representation x has class α) that maximizes the
probability that we get the labels from the features i.e., maximizes

Probability of getting labels {yi,α} given features {xi} =
N∏
i=1

C∏
α=1

p̂(α|xi)yi,α (1)

Typically, in ML language we frame this ”probability maximization” as a ”loss mini-
mization” with the loss function defined as follows minimize the function

L = −
1

N

C∑
α=1

N∑
i=1

yi,α ln p̂(α|xi). [Categorical Cross Entropy] (2)

The negative of the log of Eq.(1) is proportional to Eq.(3), and thus ”minimizing the
categorical cross entropy loss” is equivalent to ”maximizing the probability that we get
the labels from the features.”
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Setup of Problem: Say that we have a data set consisting of N points in feature space
denoted xi ∈ RM and their corresponding one-hot-encoded classes yi,α ∈ {0, 1} where
α = 1, . . . , C for C classes.

The principal task of machine learning: Find p̂(α|x) (i.e., the probability that a data
point with feature representation x has class α) that minimizes

L = −
1

N

C∑
α=1

N∑
i=1

yi,α ln p̂(α|xi). [Categorical Cross Entropy] (3)

Question

Can we use a Bayesian argument to estimate what this loss should be? Can we use
this Bayesian estimate to determine whether it is possible to ”learn” (in an ML sense)
from a data set?
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}. First we need to estimate the class probability
given our feature.

J We denote as ρ̂(x|α) the estimate of the probability density in feature space for
class α.

J The quantity p̂(α|x) is the estimate of the probability (i.e., not density) of being
in class α given feature point x. This latter quantity is what ML problems aim to
find and what we will use Bayes rule to compute.

J By Bayes rule, we have

p̂(α|x) =
ρ̂(x|α)p̂(α)

ρ̂(x)
=

ρ̂(x|α)p̂(α)∑C
α′=1 ρ̂(x|α′)p̂(α′)

. (4)
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}. First we need to estimate the class probability
given our feature.

J By Bayes rule, we have

p̂(α|x) =
ρ̂(x|α)p̂(α)

ρ̂(x)
=

ρ̂(x|α)p̂(α)∑C
α′=1 ρ̂(x|α′)p̂(α′)

. (5)

J The quantity p̂(α) is the data-based estimate for being in class α:

p̂(α) =
1

N

N∑
i=1

yi,α. (6)

J The quantity ρ̂(x|α) is the data-based estimate for the probability density at
point x given that we are in class α. Using the explicit definition of the
probability density of samples, we have

ρ̂(x|α) =
1∑N

i=1 yi,α

N∑
j=1

δ(x− xj) δ1,yj,α (7)
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}. First we need to estimate the class probability
given our feature.

J By Bayes rule, we have

p̂(α|x) =
ρ̂(x|α)p̂(α)

ρ̂(x)
=

ρ̂(x|α)p̂(α)∑C
α′=1 ρ̂(x|α′)p̂(α′)

. (8)

J Probability definitions

p̂(α) =
1

N

N∑
i=1

yi,α, ρ̂(x|α) =
1∑N

i=1 yi,α

N∑
j=1

δ(x− xj) δ1,yj,α (9)

J Or defining Sα as the set of data points i in class α

ρ̂(x|α) =
1

|Sα|
∑
j∈Sα

δ(x− xj), (10)

where δ(X) is the Dirac delta function and δi,j is the Kronecker delta function.
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}. First we need to estimate the class probability
given our feature.

J Probability of feature given class

ρ̂(x|α) =
1

|Sα|
∑
j∈Sα

δ(x− xj), (11)

where δ(X) is the Dirac delta function and δi,j is the Kronecker delta function.

J In practical circumstances to compute Eq.(11) we use what is known as kernel
density estimation. This involves replacing the Dirac delta function with another
function K(x) with a given width h. We then have

ρ̂(x|α) =
1

|Sα|
∑
j∈Sα

δ(x− xj), →
1

|Sα|hM
∑
j∈Sα

K

(
x− xj

h

)
≡ ρ̂KDE(x|α).

(12)
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}.

J In effect, we will replace the theoretical distribution ρ̂(x|α) with KDE
distribution ρ̂KDE(x|α) (thus in effect approximating the estimate of a theoretical
quantity) and use the kernel density estimate in our Bayes formulas.

J In particular, the previous expression for p̂(α|x) becomes

p̂(α|x)→
ρ̂KDE(x|α)p̂(α)∑C

α′=1 ρ̂KDE(x|α′)p̂(α′)
, (13)

where the ”→” is meant to signify that the right-hand-side is a numerical
approximation of the left-hand-side.
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We want to estimate the loss we expect to obtain from training a model on a data set
{{xi, yi,α}; i = 1, . . . , N ;α = 1, . . . , C}.

J Inserting this KDE probability into the original loss function, we ultimately find

L = −
1

N

C∑
α=1

N∑
i=1

yi,α ln p̂(α|xi)

= −
C∑
α=1

p̂(α) ln p̂(α)−
1

N

C∑
α=1

N∑
i=1

yi,α ln

[
ρ̂KDE(xi|α)∑C

α′=1 ρ̂KDE(xi|α′)p̂(α′)

]
. (14)

J The first term in Eq.(14) represents the loss we would expect from just
predicting class probabilities from a frequency count of the classes in the data;
we denote this term L0.

J The second term represents actual learning. If our model has managed to learn
anything about class-assignment from the data, then we would expect this term
to be negative and the total loss to be lower than L0.
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With Eq.(14), we can define how much we expect to learn from from a given data set.
We define the learning quotient Q as

Q ≡
L0 − L
L0

=
1

NL0

C∑
α=1

N∑
i=1

yi,α ln

[
ρ̂KDE(xi|α)∑C

α′=1 ρ̂KDE(xi|α′)p̂(α′)

]
(15)

representing the fractional decrease in loss we expect from the naive class-frequency-
based estimate of loss. Given that L ≥ 0 and L ≤ L0, we find that Q ∈ [0, 1].

Definition of Learning Quotient Q:

The learning quotient is the fraction of total information we can extract from the data
set D = {{xi, yi}; i = 1, . . . , N} by representing the classes {α} in terms of features x.
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Definition of Learning Quotient Q:

The learning quotient is the fraction of total information we can extract from the data
set D = {{xi, yi}; i = 1, . . . , N} by representing the classes {α} in terms of features x.

Qualitatively, the learning potential tells us how predictive feature representation x is of
class α. The value 0 corresponds to not at all predictive and 1 corresponds to maximally
predictive.

Next, we want to apply the learning quotient on sample data sets by exploring three
questions:
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Definition of Learning Quotient Q:

The learning quotient is the fraction of total information we can extract from the data
set D = {{xi, yi}; i = 1, . . . , N} by representing the classes {α} in terms of features x.

Next, we want to apply the learning quotient on sample data sets by exploring three
questions:

J Intuition: Does the learning quotient Eq.(15) match our intuitive sense of how
much we can learn given a feature set and labels?

J Minimum Loss: Does the Bayesian estimate of the loss Eq.(14) match the
minimum value we expect from model training?

J Feature Importance: Can the learning quotient tell us how well various features
(or their combinations) separate the classes of data?
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Intuition

J Intuition: Does the learning quotient Eq.(15) match our intuitive sense of how
much we can learn given a feature set and labels?

Let’s say we are trying to predict whether companies churn or renew their contract
with our business. The predictor variable we want to use to determine the likelihood of
renewal is ”engagement score.”

We have collected data on the engagement scores and renewal status of past companies.

Figure 1: Data table for engagement score and renewal status

How can we know whether these engagement scores will be predictive of renewal status?
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Intuition

Let’s say we are trying to predict whether companies churn or renew their contract
with our business. The predictor variable we want to use to determine the likelihood of
renewal is ”engagement score.”

How can we know whether these engagement scores will be predictive of renewal status?

J Answer: For a qualitative estimate, we can plot distributions of the the
engagement scores for ”Churned” and ”Renewed” companies.

Let’s consider two example datasets

Figure 2: (Example) No clear separation
between classes

Figure 3: (Example) Fairly clear
separation between classes
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Intuition

Let’s consider two example datasets

Figure 4: (Example) No clear separation
between classes

Figure 5: (Example) Fairly clear
separation between classes

J Fig.4 shows no clear separation between the churned or renewed classes, so for
this dataset we don’t expect the feature to tell us much about renewal status.

J Conversely, Fig.5 does show fairly clear separation between the classes, so for
this data set we expect the feature to tell us a lot about renewal status.

Can we reify these intuitions by calculating the learning potential?
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Intuition

Can we reify these intuitions by calculating the learning potential?

Figure 6: (Example) No clear separation
between classes; Low learning potential

Figure 7: (Example) Fairly clear
separation between classes; High learning
potential

Computing the Learning Potential Q for both of these datasets, we find...

J Fig.6 shows that the learning potential for the nearly overlapping dataset is very
low (i.e., ∼ 0.0), indicating the feature has little ability to separate the classes

J Conversely, Fig.7 shows that the learning potential for the more separated
dataset is fairly high (i.e., ∼ 0.8), indicating that there is a lot of potential
learning from this feature set
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Minimum Loss

J Minimum Loss: Does the Bayesian estimate of the loss Eq.(14) match the
minimum value we expect from model training?

We will consider the same single-feature data set from before (in particular the one with
cleanly separated labels). We will train a neural network on this data set and track the
loss for the training and validation set.

Figure 8: Two-layer neural-network Architecture

Does the neural network loss level off at a value that matches the predicted loss L in
Eq.14?
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Minimum Loss

Does the neural network loss level off at a value that matches the predicted loss L in
Eq.14?

Figure 9: Accuracy and Loss for Network

J The neural network loss levels off at L meaning that by this point in training
(i.e., around epoch f) we have exhausted the learning potential for this feature
set.

J L does predict final loss value for training
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Feature Importance

J Feature Importance: Can the learning quotient tell us how well various features
(or their combinations) separate the classes of data?

We again consider our example of predicting renewal status for a collection of companies.

But now we assume we have two features that we can use in the prediction.

Figure 10: Data table for two features and renewal status
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Feature Importance

We can plot distributions of these features for Churned and Renewed companies to get
a sense of the ranges over which they vary

Figure 11: Distribution plots of the two features for churned and renewed companies

Can we use the learning potential to know which features are most essential for distin-
guishing the two classes?
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Feature Importance

Can we use the learning potential to know which features are most essential for distin-
guishing the two classes?

To answer this, we compute the learning potential in three cases:

J feature1 is the only predictor variable for status

J feature2 is the only predictor variable for status

J both feature1 and feature2 are predictor variables for statuses

The case with the highest learning potential corresponds to the feature set which can
best predict renewal status.
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Feature Importance

Computing the learning potential for these three cases, we find

Feature Selection Learning Potential, Q
feature1 0.003

feature2 0.619

feature1 & feature2 0.683

Table 1: Learning Potential by Feature

Thus we see

J feature1 has very low learning potential so it is not an essential feature

J feature2 has a fairly high learning potential so it is an essential feature

J feature1 and feature2 together have only a slightly higher learning potential
than feature2 alone

Conclusion
=⇒ We can likely use feature2 alone to predict renewal status
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Conclusion and Summary

We found two main results:

L = −
C∑
α=1

p̂(α) ln p̂(α)−
1

N

C∑
α=1

N∑
i=1

yi,α ln

[
ρ̂KDE(xi|α)∑C

α′=1 ρ̂KDE(xi|α′)p̂(α′)

]

[Bayesian Estimate of Loss] (16)

Q ≡
L0 − L
L0

; L0 = −
C∑
α=1

p̂(α) ln p̂(α) [Learning Quotient] (17)

And we found three applications of these results

J Intuition: Learning quotient can tell us how much a model can learn from a
feature data set

J Minimum Loss: Computing the Bayesian expected loss and the loss of a trained
model can provide a signal for when a model has been overtrained

J Feature Importance: Comparing learning quotients can tell us which
combinations of features are most important
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Fin
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