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A Mathematical Primer



A question of combinatorics

Say we have two systems

(a) Non-gendered dancers (b) Gendered dancers

We want to ask two purely combinatorics questions about these two systems:

• System of gendered partners: We have N male-female couples together in a

dance hall. The members of the couples separate. How many ways can we form

k ≤ N couples such that none of these couples are from the original set?

• System of nongendered partners: We have N couples together in a dance hall.

The members of the couple separate. How many ways can we form k ≤ N

couples such that none of these couples are from the original set?

These questions are relevant to specific and non-specific interactions between

biomolecules. We can use the principle of inclusion/exclusion to answer this question.

But first, it’s best to work through a simpler example.
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Example: Permutations of (1, 2, 3)

Question: What is the number of ways to order the numbers 1, 2, 3, such that no

number k is in its kth position? (We define this number as d3)

Answer: The total size of the set of all permutations is 3!. Let Ak be the set of all

permutations where k is in the kth position. The desired quantity d3 is the number of

elements in the complement of the union of A1 , A2, and A3.

A1

A2

A3

# of orderings with

”2” in 2nd position

# of orderings with

”1” in 1st position

# of orderings with

”3” in 3rd position

Namely,

d3 = 3!− |A1 ∪ A2 ∪ A3|,

where |S| is the size of the set S.

3



Example: Permutations of (1, 2, 3), continued

We want to find

d3 = 3!− |A1 ∪ A2 ∪ A3|,

where |S| is the size of the set S, and Ak be the set of all permutations where k is in

the kth position.

We compute the quantity d3, by inspecting the figure and writing the union of the

three sets as sums and differences between the intersection between the sets.

A1

A2

A3

We note that

|A1 ∪ A2 ∪ A3|

= |A1|+ |A2|+ |A3|

− |A1 ∩ A2| − |A2 ∩ A3| − |A3 ∩ A1|

+ |A1 ∩ A2 ∩ A3|

= 3(3− 1)!− 3(3− 2)! + 1(3− 3)!

Thus our desired result is

d3 = 3!− 3(3− 1)! + 3(3− 2)!− 1(3− 3)! = 2

This is basic way we handle these ”no element in the ’correct’ place” problems. (The

foundational principle is called ”the principle of inclusion and exclusion”)
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Generalizations

The previous answer was simple. However, the exact answer to this example is not

important. The method is what is significant.

We can rewrite our answer as

d3 = 3!− 3(3− 1)!− 3(3− 2)! + 1(3− 3)! =
3∑

j=0

(−1)j
(3

j

)
(3− j)!.

This result suggests a generalization:

Derangement (def.) The number of ways to order the numbers 1, 2, . . . ,N

such that no number k is in the kth position is

dN =
N∑
j=0

(−1)j
(N
j

)
(N − j)!.

What is important in the equation for dN is that the j = 0 term is the number of ways

to order all the numbers without constraint.
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Back to dancing couples

With this method we can now answer our original combinatorics questions

Non-gendered partners problem

Total number of possible pairs

The number of ways to form k pairs

from 2N non-gendered elements is

(2N

2k

)
(2k − 1)!!.

Answer to Q on slide #

The number of ways to form k pairs

from 2N non-gendered such that none

of the pairs were part of some original

pairing is

aN,k

=
N∑
j=0

(−1)j
(N
j

)(2N − 2j

2k − 2j

)
(2k − 2j − 1)!!

Gendered partners problem

Total number of possible pairs

The number of ways to form k

male-female pairs from N males and

N females is (N
k

)2

k!.

Answer to Q on slide #

The number of ways to form k

male-female pairs from N males and N

females such that none of the pairs

were part of some original pairing is

bN,k

=
N∑
j=0

(−1)j
(N
j

)(N − j

k − j

)2

(k − j)!
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Non-gendered Partition Function



Properties of the non-gendered dimer system

We want to compute the partition function (and ultimately the equilibrium constraints)

for a system of non-gendered monomers which can form correct and incorrect dimers.

Figure 2: This microstate has four favorable contacts (in blue), six unfavorable contacts (in

yellow), and ten unpaired subunits (in grey) and has an energy −(10E0 + 4∆).

We have monomers αk for k = 1, . . . ,N,N + 1, . . . , 2N which are distinct and exist as

single copies. If two α monomers come into contact (say an αi and an αj monomer)

the two can form a dimer with binding energy

E(αi , αj ) =

{
−(E0 + ∆) if |i − j | = N,

−E0 otherwise.

The correct contacts are those for which α1 binds with αN+1, α2 binds with αN+2,

and so on. The incorrect contacts are all other bindings.
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Properties of the non-gendered dimer system

We want to compute the partition function (and ultimately the equilibrium constraints)

for a system of non-gendered monomers which can form correct and incorrect dimers.

We have monomers αk for k = 1, . . . ,N,N + 1, . . . , 2N which are distinct and exist as

single copies. If two α monomers come into contact (say an αi and an αj monomer)

the two can form a dimer with binding energy

E(αi , αj ) =

{
−(E0 + ∆) if |i − j | = N,

−E0 otherwise.

The resulting partition function is

ZN(βE0, β∆) =
N∑

k=0

k∑
m=0

(
V

λ3
0

)2N−2k ( V

(λ0/
√

2)3

)k

eβE0(k−m)eβ(E0+∆)m
(N
m

)
aN−m,k−m,

where

aN,k =
N∑
j=0

(−1)j
(N
j

)(2N − 2j

2k − 2j

)
(2k − 2j − 1)!!,

and λ0 is the de Broglie wavelengths for a monomer.
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Partition function for non-gendered system

...with some identities we find...

The partition function for the non-gendered dimer system with a binding energy of

E0 for unfavorable pairs and a binding energy of E0 + ∆ for favorable pairs (where

each monomer has mass m0) is

ZN(βE0, β∆) =
1

2
√
π Γ
(
N + 1/2

) ( V

λ3
0

)2N ∫ ∞

0

dx dy
e−x−y

√
xy

(
M2N

+ +M2N
−

)
,

where

M± ≡
√
x ±

(
2
√

2λ3
0

V

)1/2

eβE0/2
√

yΦ(x ;β∆),

with

Φ(x ;β∆) ≡ eβ∆ + 2x − 1.

Here λ0 = h/
√

2πm0kBT and m0 is the mass of a monomer.

From this partition function, we can compute the equilibrium values of the number of

total dimer contacts 〈k〉 and the number of favorable dimer contacts 〈m〉 with the

definitions

〈k〉 =
∂

∂(βE0)
lnZN(βE0, β∆), 〈m〉 =

∂

∂(β∆)
lnZN(βE0, β∆)
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Equilibrium for non-gendered system

The previous partition function appears intractable, but we can simplify it greatly

using Laplace’s method (also known, as the method of steepest descent or the saddle

point approximation).

We rewrite the partition function as

ZN(βE0, β∆) =

∫ ∞

0

dx dy exp
[
− βFN(x , y ;βE0, β∆)

]
' c0,N exp

[
− βFN(x̄ , ȳ ;βE0, β∆)

]
,

where βFN is an approximate free energy for the system, and x̄ and ȳ are the values

of x and y which give βFN a local minimum.

Namely,

∂i (βFN(x , y ;βE0, β∆)
∣∣∣
x=x̄,y=ȳ

= 0, detHij > 0, Tr Hij > 0,

where

Hij = ∂i∂j (βFN(x , y ;βE0, β∆))
∣∣∣
x=x̄,y=ȳ

,

is the Hessian matrix of the system.

With this approximation, we find the equilibrium conditions

4
√

2λ3
0

V
eβE0 =

〈k〉 − 〈m〉(1− e−β∆)

(N − 〈k〉)2
,

eβ∆

2
= 〈m〉

N − 〈m〉(1− e−β∆)

〈k〉 − 〈m〉(1− e−β∆)
.
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Type I and Type II dimer systems

From these equilibrium conditions, we find that we can distinguish between two types

of dimer system characterized by how the parameters ∆, E0, λ3
0/V (parametrized

through (βE0)3/2 = λ3
0/V ) and N relate to one another:

Type I (Strong Favorability)

∆

ln(2N)
>

2

3

E0 + ∆

W0

(
2
3
E0+∆
EV

(
N

4
√

2

)2/3
)

Example Plot

Type II (Weak Favorability)

∆

ln(2N)
<

2

3

E0 + ∆

W0

(
2
3
E0+∆
EV

(
N

4
√

2

)2/3
)

Example Plot

*The function W0(x) is defined by W0(xex ) = x . These conditions are slightly corrected from my

last group meeting.
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Gendered Partition Function



Properties of the gendered dimer system

We want to compute the partition function (and ultimately the equilibrium constraints)

for a system of gendered monomers which can form correct and incorrect dimers.

Figure 3: This microstate has four favorable contacts (in blue), six unfavorable contacts (in

yellow), and ten unpaired subunits (in grey) and has an energy −(10E0 + 4∆).

We have monomers αk for k = 1, . . . ,N, and monomers βk for k = 1, . . . ,N. If an α

monomer comes into contact with a β monomer, the two can form dimers (αk , β`)

with binding energy

E(αi , βj ) =

{
−(E0 + ∆) if i = j ,

−E0 otherwise.

The correct contacts are those for which α1 binds with β1, α2 binds with β2, and so

on. The incorrect contacts are all other bindings.
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Properties of the gendered dimer system

We want to compute the partition function (and ultimately the equilibrium constraints)

for a system of gendered monomers which can form correct and incorrect dimers.

We have monomers αk for k = 1, . . . ,N, and monomers βk for k = 1, . . . ,N. If an α

monomer comes into contact with a β monomer, the two can form dimers (αk , β`)

with binding energy

E(αi , βj ) =

{
−(E0 + ∆) if i = j ,

−E0 otherwise.

The resulting partition function is

ZN(βE0, β∆) =
N∑

k=0

k∑
m=0

(
V

λ3
α

)N−k
(

V

λ3
β

)N−k (
V

λ3
αβ

)k

eβE0k
(N
m

)
bN−m,k−m eβ∆m,

where

bN,k =
N∑
j=0

(−1)j
(N
j

)(N − j

k − j

)2

(k − j)!,

and λα, λβ , and λαβ are the de Broglie wavelengths for the α monomer, β monomer,

and αβ dimer respectively.
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Partition function for gendered system

In a way similar to our analysis of the non-gendered system, we can analyze a

gendered system.

We find that the partition function for the gendered dimer system with a binding

energy of E0 between unfavorable pairs and a binding energy of E0 + ∆ between

favorable pairs (where one gender has mass mα and the other has mass mβ) is

Zgen.
N (βE0, β∆) =

1

2πN!

(
V

λ̄3

)2N ∫ ∞

0

dx dy

∫ 2π

0

dφ e−x−y IN ,

where

I ≡ x +
λ3
µ

V
y Ω(x ;β∆) + 2

(
λ3
µ

V

)1/2

eβE0/2
√

y Ω(x ;β∆) cosφ,

with

Ω(x ;β∆) ≡ eβ∆ + x − 1.

The quantities λ̄ and λµ are the de Brogile thermal wavelengths computed from the

geometric mean and the reduced mass, respectively, of the two species of monomers:

λ̄ =
h√

2πkBT (mαmβ)1/2
, λµ =

h
√

2πkBT

√
1

mα
+

1

mβ
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Equilibrium for gendered system

From the previous partition function, we can compute the equilibrium values of the

number of total dimer contacts 〈j〉 and the number of favorable dimer contacts 〈`〉
with the definitions

〈j〉 =
∂

∂(βE0)
lnZgen.

N (βE0, β∆), 〈`〉 =
∂

∂(β∆)
lnZgen.

N (βE0, β∆).

Approximating the partition function with Laplace’s method (and computing critical

points and checking stability), we find for the gendered system

λ3
µ

V
eβE0 =

〈j〉 − 〈`〉(1− e−β∆)

(N − 〈j〉)2
, eβ∆ = 〈`〉

N − 〈`〉(1− e−β∆)

〈j〉 − 〈`〉(1− e−β∆)
.

These equilibrium equations are identical in form to those for the non-gendered dimer

system:

4
√

2λ3
0

V
eβE0 =

〈k〉 − 〈m〉(1− e−β∆)

(N − 〈k〉)2
,

eβ∆

2
= 〈m〉

N − 〈m〉(1− e−β∆)

〈k〉 − 〈m〉(1− e−β∆)
.

All of our previous qualitative results on Type I and Type II dimer systems,

temperature conditions, and various phase behaviors transfer to the gendered dimer

system.
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All correct dimers in non-gendered and gendered system

Given the similarity between the non-gendered and the gendered dimer systems we can

summarily state the conditions that must be satisfied for both systems to be in a state

of all correct dimers.

Non-gendered dimer system

If the system is in a thermal

equilibrium consisting entirely of

correct dimers then T satisfies

kBT <
∆

ln(2N)
.

Gendered dimer system

If the system is in a thermal

equilibrium consisting entirely of

correct dimers then T satisfies

kBT <
∆

ln(N)
.

The above two are necessary rather than sufficient conditions for being in the

equilibrium all correct dimers. In both cases, there is the same scaling with N.

Because the properties of the two systems are so similar, we can analyze one and

make appropriate transformations to reach the other.
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Extension #1: Distribution of correct
binding energies



Distribution of energies for the dimer system

We have been working with a distribution of energies peaked at two values: −E0 and

−(E0 + ∆).

A more general analysis would involve an interaction matrix or a distribution of

energies for both correct and incorrect contacts.

However, this doesn’t seem to lead to a soluble partition function, so we consider

something simpler: a distribution of energies for correct contacts alone:
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Partition function for distribution of correct contact energies

(Consider the non-gendered dimer system as an example) We have monomers αk for

k = 1, . . . ,N,N + 1, . . . , 2N which are distinct and exist as single copies. If two α

monomers come into contact (say αi and αj where i < j) the two can form a dimer

with binding energy

E(αi , αj ) =

{
−(E0 + ∆i ) if j = i + N,

−E0 otherwise.

We note that E(αi , αj ) = E(αj , αi ).

Computing the partition function for this system we find

ZN(βE0, {β∆k}) = c0,N

∫ ∞

0

dx dy
e−x−y

√
xy

∮

dz

z
BN(z)

N∏
`=1

[
z x + η y(δ` − 1 + x)

]
,

where c0,N = 1/2
√
πiΓ(N + 1/2),

η ≡
2
√

2λ3
0

V
eβE0 and δ` = eβ∆` .

and

BN(z) =
N + 1

2

∫ 1

0
dt

[(√
1− t +

√
t/z
)2N

+
(√

1− t −
√

t/z
)2N

]
. (1)

Admittedly, this result appears intractable. But we can find equilibrium equations from

this result.
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Equilibrium for distribution of correct contact energies

From the previous partition function, we can derive the equilibrium conditions on x̄ , ȳ ,

z̄.

1 = N

∫ ∞
−∞

d∆ g(∆)
η(eβ∆ − 1 + x̄)

z̄ x̄ + ηȳ(eβ∆ − 1 + x̄)

N − x̄ = N

∫ ∞
−∞

d∆ g(∆)
ηȳ(eβ∆ − 1)

z̄ x̄ + ηȳ(eβ∆ − 1 + x̄)
.

1

z̄(z̄ + 1)
=

∫ ∞
−∞

d∆ g(∆)
x̄

z̄ x̄ + ηȳ(eβ∆ − 1 + x̄)

These equilibrium conditions are associated with the order parameters 〈`〉 and 〈m〉
through the integral definitions.

〈k〉 =

∫ ∞
−∞

d∆ g(∆)
ηȳ(eβ∆ − 1 + x̄)

z̄ x̄ + ηȳ(eβ∆ − 1 + x̄)

〈m〉 =

∫ ∞
−∞

d∆ g(∆)
ηȳ eβ∆

z̄ x̄ + ηȳ(eβ∆ − 1 + x̄)
.

Main Point? Not clear.

It’s possible to write down the equilibrium conditions for this system, but it is not clear

how to obtain physical properties from these conditions (or even if the effort is worth

it).
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Extension #2: Giving monomers and
dimers structure



Rotation and vibration of dimers

We have previously considered monomers and dimers without any extended structure.

But protein dimers have rotational and vibrational energy, and single monomers can

have rotational energy.

Statistical mechanics review:

• Rotational partition function: For an object with moments of inertia A, B, and

C , along principal axes, the rotational partition function is

ζrot =
√
π

(
2β

~2

)3/2 1

(ABC)1/2
,

• Vibrational partition function: For a system with harmonic oscillator frequency ω

the (quantum) partition function is

ζvib =
1

2 sinh(β~ω)

To incorporate these effects, we will make the following assumptions:

– Correct dimers vibrate with frequency ω∆ and incorrect dimers vibrate with

frequency ωE0
. Monomers do not vibrate at any frequency.

– All monomers have the principal moments of inertia A0, B0, and C0

– All dimers have the principal moments of inertia A, B, C .
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Rotation and vibration of dimers: new equilibrium conditions

To incorporate these effects, we will make the following assumptions:

– Correct dimers vibrate with frequency ω∆ and incorrect dimers vibrate with

frequency ωE0
. Monomers do not vibrate at any frequency.

– All monomers have the principal moments of inertia A0, B0, and C0

– All dimers have the principal moments of inertia A, B, C .

From these assumptions, we can derive the new equilibrium conditions

A0B0C0

π
√
ABC

(
~2

2β

)3
2
√

2λ3
0

V

eβE0

sinh(β~ωE0
)

=
〈k〉 − 〈m〉(1− f −1)

(N − 〈k〉)2

f

2
= 〈m〉

N − 〈m〉(1− f −1)

〈k〉 − 〈m〉(1− f −1)
,

where

f =
eβ∆

2

sinh(β~ωE0
)

sinh(β~ω∆)

Main Point? New thermal effects.

Incorporating vibrational and rotational degrees of freedom lowers the effective binding

energy for all species and consequently lowers the temperature at which system

transitions to state where 〈k〉 ' 〈m〉 ' N.
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Summary and ending thoughts



Summary and ending thoughts

1. Non-gendered dimer system: Able to find partition function, equilibrium

conditions, numerically compute temperature dependence of order parameters,

and transition temperatures

2. Gendered dimer system: Same as above.

3. Extension #1–Spectrum of energies: Able to find partition function and

equilibrium conditions. Not clear how or whether to proceed.

4. Extension #2–Physical molecules: Able to find partition function (not shown in

presentation) and equilibrium conditions. Makes system more physically plausible,

but much more complicated.

Ending thoughts: Focus on simpler details first (without the energy spectrum or

internal structure), to develop an understanding of the physical properties.
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Figure 4: https://xkcd.com/523/

End
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